
Distributing a Fleet of
Drones over an Area with

No-Fly Zones

DESIGN DOCUMENT

Executive Summary
This project is a web-based application designed to manage drone operations
within specified areas, including no-fly zones. The goal of the project is to create an
application where users can define their drone fleet size, the survey region, and
any restricted zones within that area. Currently, no applications efficiently map
no-fly zones and deploy multiple drones. This application will be one of the first to
utilize partitioning and pathing algorithms to manage multiple drones while
avoiding restricted areas. Upon starting the web application, the user can enter the
region, the no-fly zones, and the number of drones. Once the user selects the
inputs, the region will be split into partitions equal to the number of drones. After
the map is partitioned, the user will have the ability to add events to the map
therefore allowing drones to respond to these events based on which partition they
are in. First, for the frontend of this application, we will use React and Vite which
utilizes both JavaScript and TypeScript. Next, for our map display, we will use
MapBox API to display the region, drones, and partitions to the user. Finally, for
the backend, we will use Python (Django) to run the algorithms used for
partitioning and drone management. Our backend code will allow us to display
drone routes back to the UI for the user hopefully in real-time. So far, we have
developed a frontend prototype of the application. Our backend is on hold due to
waiting for an algorithm from the grad student we are working with. Our current
design meets the requirements and addresses the users’ needs. We have extensively
discussed with our client/advisor about what is expected in the final design and
what is working well in the current design. For our next steps, we will implement
the application's backend, integrate Mapbox for coordinate handling and drone
visualization, and develop a cohesive visual interface.

Learning Summary
DEVELOPMENT STANDARDS & PRACTICES USED

- Agile Task Management Methodology
- Object Oriented Programming
- Data Structures
- IEEE Std 1012, Standard for Software Verification and Validation
- IEEE Std 1219, Standard for Software Maintenance
- IEEE/ISO/IEC 26512-2017, Requirements for acquirers and suppliers of information

for users
- IEEE Std 982.1, Standard Dictionary of Measures to Produce Reliable Software
- IEEE/ISO/IEC 15288-2015, System life cycle processes

SUMMARY OF REQUIREMENTS

- Design a web application that allows users to place events for drones to respond to
- User should be able to input number of drones, location, and no-fly zones
- User should be able to determine which pathing algorithm they would like to

utilize for their drones
- UI should be clean and easy to use
- Application should respond quickly and be able to demonstrate drone flight

correctly

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

- CS 227: Object Oriented Programming
- CS 228: Introduction to Data Structures
- CS 309: Software Development Practices
- CS 317: Introduction to Software Testing
- CS 311: Introduction to the Design and Analysis of Algorithms
- CS 319: Construction of User Interfaces
- CS 327: Advanced Programming Techniques
- CS 329: Software Project Management
- CS 352: Operating Systems Concepts

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

- React+Vite
- TypeScript
- Python
- MapBox API

Table of Contents
Executive Summary... 1
Learning Summary... 2

Development Standards & Practices Used..2
Summary of Requirements.. 2
Applicable Courses from Iowa State University Curriculum...2
New Skills/Knowledge acquired that was not taught in courses.. 2

Table of Contents.. 3
Tables and Figures…….. 5
Introduction... 5

Problem Statement...5
Intended Users..5

Requirements, Constraints, And Standards.. 7
Requirements & Constraints..7
UI Requirements...7
Backend requirements..7
Economic Requirements..8
Resource Requirements... 8
Physical Requirements...8
Engineering Standards...8

Project Plan…… 10
Project Management/Tracking Procedures………………………………………………………………………………. 10
Task Decomposition………. 10
Project Proposed Milestones, Metrics, and Evaluation Criteria... 11
Project Timeline/Schedule... 12
Risks and Risk Management/Mitigation... 13
Personnel Effort Requirements.. 13
Other Resource Requirements... 14

Design.. 15
Design Context.. 15

Broader Context..15
Prior Work/Solutions... 15
Technical Complexity.. 16

Design Exploration..16
Design Decisions.. 16
Ideation... 17
Decision-Making and Trade-Off... 17

Proposed Design..17
Overview... 17
Detailed Design and Visual(s)...19

Functionality..20
Areas of Concern and Development... 21
Technology Considerations... 21

Design Analysis... 23
Testing... 24

Unit Testing...24
Interface Testing... 24
Integration Testing... 24
System Testing.. 25
Regression Testing.. 25
Acceptance Testing... 25
Security Testing (if applicable).. 25
Results... 25

Implementation..26
Ethics and Professional Responsibility..27

Areas of Professional Responsibility/Codes of Ethics.. 27
Four Principles..29
Virtues... 30

Closing Material.. 31
Conclusion... 31
References.. 31
Appendices...31

Team.. 32
Team Members..32
Required Skill Sets for Your Project...32
Skill Sets covered by the Team...32
Initial Project Management Roles... 32
Team Contract...33

Tables and Figures
TABLES

● Table 1: Task Decomposition (Section 3.2)
● Table 2: Individual Contribution (Section 3.6)
● Table 3: Broader Context (Section 4.1.1)
● Table 4: Code of Ethics (Section 7.1)
● Table 5: Ethics Four Principles (Section 7.2)

FIGURES

● Figure 1: Gantt Chart (Section 3.4)
● Figures 2-4: Frontend Design (Section 4.3.1)
● Figure 5: Global Architecture (Section 4.3.2)
● Figure 6: Functionality (Section 4.3.2)
● Figure 7-8: Frontend Prototype (Section 6)

1 Introduction

1.1 PROBLEM STATEMENT

In the last several years, drones and automation have become incredibly popular tools for
many scenarios. This mostly comes from the recent affordability for the average drone and
automation consumers, but also due to the wide variety of applications drones can be
utilized for. Many people may think drones are simply utilized for scanning environments
and video work. Still, they also can be used for search and rescue operations, delivery
services, as well as maintenance work. However, many of these drones cannot be used in
an automated manner but rather have drawn out flight paths and event management. It
would be significantly more straightforward to have all of this automated so that many
important resources delegated to planning could be used elsewhere.

This project aims to develop a web application that allows users to input a given area or
dataset of no-fly zones, as well as several drones, and then be able to visualize how these
drones would respond to events within that given environment. Depending on the number
of drones that are given, the area will be partitioned into smaller areas that avoid no-fly
zone regions while optimizing response time to critical events. Each drone will be limited
to responding to events within their partitioned region to ensure the fastest response
times. Specifically, this project considers scenarios that users can utilize in the real world
and can see drone responses to events in real-time.

1.2 INTENDED USERS

The project aims to create a visualization for users to see an automated fleet of drones over
areas the users consider important. Due to this, there are many different users, with
several different use cases that can be considered.

1. Emergency Services

a. Drones will respond to natural disaster events and evaluate damages

 i. Weather damage ii. Wildfires

iii. Floods iv. Volcanic Activity

b. Police usage

 i. Search large regions and rescue people in need

ii. Track crimes that could be occurring

c. Firefighters

i. Track the shape of a large fire and find potential sources

ii. Mark buildings that have fires

2. Delivery of Goods

a. Grocery store deliveries

b. Supply deliveries for disaster relief

c. Pharmaceutical deliveries

3. Agriculture

a. Water crops that are too dry

b. Monitor different land regions

c. Spread fertilizer in needed locations

4. Infrastructure

a. Monitor electrical elements of cities (power lines, generators, transformers)

b. Perform basic repairs on rooftops

2 Requirements, Constraints, And Standards

2.1 REQUIREMENTS & CONSTRAINTS

Our project has many requirements that can be divided and organized into several
categories listed below:

UI REQUIREMENTS

- Users are able to input the number of drones, the location to be used, as well as
no-fly regions to be shown to them

- Users are able to see the partitioned regions with one drone per region

- Users are able to see the output of the algorithm in real-time

- Users are able to see the movement of the drones in real-time

- Users are able to input events for the drones to respond to

- Users are able to start/stop the simulation at any time

- Users are able to navigate to the home, contact, and About pages

- Users are able to select the pathing algorithm they desire most

SECURITY REQUIREMENTS

- Users can input real-world data without an attacker being able to compromise

- The server will stay active and not be broken into by outside actors

- Each session will be unique to each user and cannot be repeated unless the same
information is provided

BACKEND REQUIREMENTS

- All data will be stored and used within each session

- The backend will be fresh with no stored data in each new session

- The backend will call out to external pathing API to path the drones and their
respective flights

- The backend will take in data from the frontend as users provide it and use it to
determine how drones respond to events

- The backend will partition the map based on the users initial input of no-fly zones

- The backend will do all algorithmic calculations

- The backend will perform the selected pathing algorithm from the frontend

ECONOMIC REQUIREMENTS

- Will need to host a server for x amount of dollars

RESOURCE REQUIREMENTS

- Each drone used will be equipped with high-precision sensors, GPS, IMUs,
cameras, and navigation systems that can call out to our API.

- The server used must be powerful enough to perform real-time calculations of
flight paths, process large datasets, and support concurrent drone operations
without delays.

PHYSICAL REQUIREMENTS

- Drones must be able to operate effectively through the 2D space that the user gives.

- Drones must withstand weather conditions (heat, rain, cold).

2.2 ENGINEERING STANDARDS

Engineering standards are important as they will ensure safety, quality, and consistency
across engineering projects. They help engineers use a common language and set of
expectations that allow them to collaborate, regardless of their location or background
efficiently. With these standards in place, engineers can avoid errors, streamline processes,
and foster innovation through a shared understanding of practices.

These standards are very much relevant to our project. The first one discusses how to
properly layout your architecture and connect your frontend and backend components to
be of quality and look good to your users. Developing things isolationally will allow us to
scale our product and its components properly without interfering with our other
components or services. The second standard discusses how to securely manage our users'
sessions and ensure that an outside source cannot access their data. This will be vital to
the project as this is one of the main points. Regarding the third standard, we will need to
test our algorithms regarding partitioning and drone flight paths. This will need to happen
to ensure the proper outcomes for our users.

IEEE 1471 (Software Architecture Standard) is crucial because:

● The project involves complex real-time interactions between frontend and backend
● Multiple components need to interact (UI, backend algorithms, external API calls)
● The system needs to be scalable to handle multiple drone operations
● Architecture documentation will be essential for maintaining the system

ISO/IEC 27000 (Information Security) is relevant because:

● The requirements explicitly mention security concerns about attackers
● Each session needs to be unique and secure
● The system handles real-world location data that must be protected

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will adopt an Agile development methodology with 2-week sprints for this project. This choice
is justified by:

- The need for frequent user feedback on UI/UX elements
- Complex requirements that may need refinement through iterations
- The ability to deliver incremental functionality
- The need to adapt to changing requirements as we better understand drone behavior

For this project, we will utilize an agile development methodology with 2 week sprints. We decided
to do this because we will need frequent user feedback on UI/UX elements. We also have complex
requirements that may need refinement through several feedback iterations. As well as this we will
need the ability to deliver incremental functionality. With all the changing requirements we will be
having as well, this will be necessary to utilize.

Project tracking will utilize the following tools:

- GitHub: Source code version control and project documentation
- Jira: Agile project management, sprint planning, and task tracking
- Slack: Team communication and integration with GitHub/Jira
- Discord: Daily standups and team meetings
- Git Flow: Branch management strategy for feature development

As for project tracking we will be using GitLab, Discord, and Google Docs for this project. GitLab
will be the repository for our code and version control that we can see over time. Discord will be our
primary communications tool to discuss changes and functionality in an easy to use manner.
Google Docs is where we keep our documents, idea pools, and articles to read up on. It is a very
simple place to keep and manage all these things.

3.2 TASK DECOMPOSITION

 Table 1 below shows our task decomposition for semester 1 and semester 2 of senior design.

Task # Planned Completion Date Task Description
(Frontend)

Task Description
(Backend)

1 10/9/24 Setup React project structure Setup Python server

2 10/24/24 Implement map visualization
component

Implement session
management

3 11/01/24 Create drone control interface Develop map
partitioning algorithm

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Frontend Milestones

- Map visualization loads in < 2 seconds: Sprint 2
- UI responds to user input in < 100ms: Sprint 3
- Real-time updates achieve 60fps: Sprint 4
- 95% test coverage: Sprint 5

Backend Milestones

- The server handles 100 concurrent users: Sprint 3
- Path calculations complete in < 500ms: Sprint 4
- Area partitioning completes in < 1 second: Sprint 5
- API response time < 200ms: Sprint 6

Algorithm Milestones

- Partitioning algorithm optimality within 90%: Sprint 4
- Pathfinding completion in < 300ms: Sprint 5
- Collision avoidance accuracy 99.9%: Sprint 6

4 12/10/24 Develop no-fly zone input
system

Create drone path
calculation system

5 01/30/25 Build real-time event
visualization

Implement pathfinding
algorithms

6 02/20/25 Implement algorithm selection
interface

Build event response
prioritization

7 03/6/25 Create simulation controls
(start/stop)

Build real-time event
processing

8 03/21/25 Develop navigation
components

Implement external API
integration

9 04/10/25 Performance testing Performance testing

10 04/24/25 User acceptance testing User acceptance testing

11 05/01/25 API documentation Deployment pipeline
setup

- Event response time < 1 second: Sprint 7

Testing Milestones

- Unit test coverage > 80%: Sprint 5
- Integration test coverage > 70%: Sprint 6
- Load testing supports 1000 requests/second: Sprint 7
- Security penetration testing passed: Sprint 8

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1 shows our Gantt Chart depicting our timeline/schedule which includes sprints and goals
for each sprint.

Sprint 1-2 (Weeks 1-4):

- Form team
- Understand the idea
- Research potential technologies

Sprint 3-4 (Weeks 5-8):

- Define requirements
- Figure out testing, goals, and technologies
- Begin prototype design

Sprint 5-6 (Weeks 9-12):

- Develop the UI
- Figure out how backend should look

Sprint 7-8 (Weeks 13-16):

- Continue UI development
- Begin on backend

Sprint 9-10 (Weeks 17-20):

- Make partitioning algorithm
- Display partitioning to frontend
- Add event management

Sprint 11-12 (Weeks 21-24):

- Add in pathing
- Test all units, interfaces, systems
- Finish out the reporting

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

A. High Probability Risks (P > 0.5)
a. Real-time performance issues (P=0.7)

i. Mitigation: Implement WebSocket for real-time updates
ii. Fallback: Reduce update frequency

b. Algorithm scalability problems (P=0.6)
i. Mitigation: Implement caching and optimization

ii. Fallback: Limit maximum area size
c. Browser compatibility issues (P=0.6)

i. Mitigation: Use polyfills and progressive enhancement
ii. Fallback: Support the latest two versions of major browsers

B. High Severity Risks
a. Security vulnerabilities

i. Mitigation: Regular security audits
ii. Implementation of security best practices

b. Data Accuracy
i. Mitigation: Implement validation layers

ii. Regular calibration checks

3.6 PERSONNEL EFFORT REQUIREMENTS

Table 2 below refers to the individual contribution and total time spent for completing the design
portion of our project.

Task # Estimated Completion Time (hours)

Frontend Initialization 18 (3 hours * 3 people)

Backend Initialization 18 (3 hours * 3 people)

Design and User Interactivity design 24 (8 hours * 3 people)

Algorithm and communications 24 (8 hours * 3 people)

Pipeline and continued workflow 30 (5 hours * 6 people)

Completion of design document &
presentation

558 (93 hours * 6 people)

Testing 12 (2 hours * 6 people)

Final Check 12 (2 hours * 6 people)

Finishing touches on presentation 18 (3 hours * 6 people)

Total: 720 (120 hours* 6 people)

3.7 OTHER RESOURCE REQUIREMENTS

Develop Resources
- CI/CD pipeline tools
- Development workstations
- Testing environments

Software Resources
- IDE licenses
- Mapping service API credits
- Testing framework licenses
- Monitoring tool subscriptions

Development Tools
- Jira licenses
- GitHub Enterprise
- Code analysis tools
- Performance monitoring tools

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The project primarily targets emergency response agencies, delivery services, and search-and-rescue
organizations. These stakeholders need systems to optimize the deployment of drone fleets for
efficient surveillance and rapid response over regions with no-fly zones. Indirectly affected
communities include urban residents or government authorities responsible for managing no-fly
zones. Additionally, industries reliant on drone technology for monitoring critical infrastructure or
agricultural areas may benefit. This project addresses the societal need for efficient and timely
emergency response, improved delivery services, or any form of drone deployment. It aims to
minimize delays in drone operations for any of the listed groups. Table 3 refers to the public health,
safety, welfare, global, cultural, social, environmental, and economic impacts or implications of our
proposed design.

Area Description Examples
Public health,
safety, and
welfare

The project improves the response time
of drones to emergencies, reducing risks
to human life and property.

Reducing delays in
search-and-rescue operations.
Enhancing public safety in
disaster-prone areas through rapid
response.
Decreasing safety risks by avoiding
drone collisions in no-fly zones.

Global,
cultural, and
social

The design reflects respect for cultural
practices by integrating with local
regulations, such as avoiding flight paths
over sensitive areas.

Adhering to airspace regulations in
proximity to airports or military
zones.

Environmental The system optimizes drone flight paths
to reduce energy consumption,
minimizing the environmental impact.

Decreasing unnecessary flight
distances for drones.

Economic The project aims to deliver a
cost-efficient system that benefits
emergency agencies and industries
without high overhead costs.

Reducing operational costs for
drone fleets by optimizing
deployments.
Creating economic opportunities
in drone technology for
underserved regions.

4.1.2 Prior Work/Solutions

Several systems exist for drone flight optimization, but few integrate no-fly zones and focus on
minimizing average response time. Research on partitioning a map for drone management has been
conducted, but these do not typically consider no-fly obstacles in their implementation. Some of
the applications also do not allow consumers to map their own no-fly zones. This could lead to
issues especially if a building or tree is not properly mapped in the flight path. Therefore, our

application could add this feature for users being able to map their own no fly zones. The difference
between our application and others is that our application will allow a user to input a number of
drones that will then be used to partition an area in sections to reduce the response time of each
drone in that area. Most applications similar to this project do not have this feature; therefore, we
can take advantage of this opportunity gap to give users this ability.

Target Solution Comparison:

- Pros:
- Direct integration of no-fly zones into partitioning algorithms.
- Visualization and interactive user interface to aid decision-making.
- Minimized response times for practical scenarios.

- Cons:
- Dependence on high-quality obstacle data.
- Computational overhead for real-time partitioning with large datasets

Some relevant products similar to our own include FlytBase [8] and DroneDeploy [9]. FlytBase
offers drone management and automation features like no-fly zone visualization, planned flight
paths, and scheduled missions. It integrates with docking stations for autonomous recharging and
tracking, making it ideal for reconnaissance and mapping. Strengths include autonomy and
visualization, but it lacks manual override options and has issues like low video resolution and slow
customer support. DroneDeploy is an app for capturing site data manually or autonomously,
supporting mapping, modeling, marketing, and inspections. It streamlines tasks like LAANC
airspace authorization and uploading up to 10,000 images at once. While praised for ease of use and
reporting compliance with surveying standards, it has drawbacks like high costs, slow processing,
and the inability to add custom no-fly zones to flight paths.

4.1.3 Technical Complexity

Subsystems:

1. Partitioning Algorithm Implementation:
- Principle: Computational geometry and graph theory.
- Complexity: Handling irregular shapes of no-fly zones and ensuring optimal

partitions.
2. Drone Response Simulation:

- Principle: Planning flight paths.
- Complexity: Simulating flight paths that respect partition boundaries and no-fly

zones.
3. UI/Visualization:

- Principle: Interactive graphics and geospatial data visualization.
- Complexity: Rendering real-time feedback from backend solutions.

4. Backend Integration:
- Principle: Database management with PostgreSQL/PostGIS.
- Complexity: Efficiently handling geospatial queries and serving data to the

frontend.

Challenging Requirements:

- Real-time response simulations for user-selected locations.
- Balancing computational efficiency with accuracy in obstacle-aware partitioning.
- Ensuring the system operates reliably under variable drone fleet sizes and geo-area

complexities.

By addressing these aspects, the project meets and exceeds industry standards in obstacle-aware
drone deployment systems.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Our design must consider technical constraints when designing the frontend and backend from
scratch. We will need to determine the framework that can be utilized on the frontend so our users
can have the best possible experience. We also need to decide what languages and technologies can
be used on the backend to store and maintain state data for our users. This is crucial to be able to
be sent back and forth between our computational geometry and pathfinding code. On top of this
we need to consider the way we want to transfer data from the backend to the frontend. Different
data types have different speeds, so finding the optimal data transfer method will be crucial to save
time for the users.

4.2.2 Ideation

For at least one design decision, describe how you ideated or identified potential options (e.g., lotus
blossom technique). Describe at least five options that you considered.

For our frontend design, there were several parameters that we considered that can be seen below:

● Response time - minimize communication time between the front and the backend
○ Framework has capability to use fast sockets
○ Framework has the ability to use multiple types of data transfer

● Ease of use - minimize time taken to develop other components that could just be easily
implemented and reused later in the development

○ Pop-ups
○ Display Boxes
○ API displays

● Quality of design - we want the users to be able to see what is going on and understand
the front facing UI that they can interact with

○ Easy to notice text boxes
○ Easy to use buttons
○ Easy to use mapping

● Data transfer capabilities - the design should be able to take in multiple data types that
the user gives in and be able to push it correctly to the backend

○ Take in polygons via data sets
○ Take in polygons via plotting on the map
○ Take in numerical data
○ Be able to make this easily into JSON

● Backend compatibility - some frontend frameworks only work well with certain
languages and backend frameworks

○ Works with many different languages and different frameworks
○ Easily communicate between them

4.2.3 Decision-Making and Trade-Off

When we decide on a frontend framework, our main criterion will be how easily data can be
transferred and how well it interacts with our chosen backend and the languages used. We must
consider how this data can be visualized to the front-facing user, as well as how well it can be
transferred into the backend and be changed for the user to use easily and efficiently. Currently we
have not chosen an option, but are leaning towards React+Vite as this has great ease in almost all of
the areas described in 4.2.2.

4.3 PROPOSED DESIGN

4.3.1 Overview

A website will be available to the general public for effective and efficient partitioning and flight
path mapping of densely populated airspace. These No-Fly Zones cause a range of issues for
standard operators of fleets of drones, i.e., delivery services, public safety officers, and geo-mapping
services. This process will be completed by having the user provide initial information about the
project scope for example, the number of drones in use and where the drones will be located
geographically. This information is then passed from the website to our server, where a specially
developed algorithm will partition the operation zone, minimizing the worst-case time scenario for
each drone's possible target points, and then send this information back to the website to allow the
user to visualize the operation. Finally, once a target destination is set, the server will run another
algorithm to find the shortest possible route to the target location. This will all be combined into an
animation on the website where the user can see in real-time how the drones are moving about the
operation space.

4.3.2 Detailed Design and Visual(s)

This project is a web application enabling users to input parameters such as area boundaries, no-fly
zones, and event locations to observe an automated fleet of drones responding to events within a
designated environment. Upon receiving user inputs, the application divides the area into smaller,
partitioned regions, each assigned to a specific drone, to minimize response times to any critical
event. The application comprises several interconnected components: the User Interface (UI), the
Backend Server, a Database, an External Pathfinding API, a Partitioning Algorithm, and a Real-Time
Data Processor. Each component has a distinct role in the system architecture.

The UI is the primary point of interaction, allowing users to enter relevant data, control simulation
settings, and visualize real-time drone movement. It is built with technologies like HTML, CSS, and
JavaScript, leveraging frameworks like React and Vue for dynamic rendering. The UI displays
partitioned areas, event points, and drone positions in real time, providing users with a clear and
interactive experience. Figures 2, 3, and 4 respectively illustrate the homepage, input selection, and
map view. These mockups of our design were created to help design the frontend or UI of our
application.

The Backend Server, developed using Python (with frameworks like FastAPI or Django) and
PostgreSQL, handles data processing and storage. It receives data from the UI, manages user
sessions, and controls algorithm execution. The backend also integrates with an External
Pathfinding API, which calculates optimized routes for each drone, ensuring they avoid no-fly zones
while covering their designated regions. The results from the API are then fed into the Real-Time
Data Processor.

The Partitioning Algorithm, implemented in Python, divides the area into distinct regions based on
the number of drones and user-defined no-fly zones. This algorithm utilizes computational
geometry libraries to create efficient, non-overlapping regions, with minimal computation time to
support real-time requirements. Once regions are determined, the Real-Time Data Processor
continuously updates drone positions and routes as events are introduced or modified. The
processor employs WebSocket technology to push updates to the UI, enabling seamless
visualization of drone responses.

These components work together to ensure an efficient, responsive system that meets real-time
visualization standards. In the final architecture as shown in Figure 5, the UI communicates with
the Backend Server, which connects to the Database, Partitioning Algorithm, and Pathfinding API.
The Real-Time Data Processor bridges the backend and frontend, maintaining continuous updates
and event-driven responses, delivering a smooth, real-time experience for users observing
automated drone fleet operations. This high-level overview and subsystem descriptions allow peer
engineers to understand the project’s architecture and replication requirements clearly.

4.3.3 Functionality

In the real world a user will firstly open our page to see a few different input prompts. As shown in
Figure 6, the user would enter the number of drones, the map location, and the necessary no-fly
zones. From here, the system would take all this data and send it to the backend to partition the
map accordingly based on the no-fly regions so the drones could navigate in equal time. From here
the drones will be placed, and partitions will be drawn onto the map. Now the user can both type
coordinates for events to occur as well as place events on the map for the drones to respond to.
Depending on the locations of the events, certain drones will fly to the events in real time for the
user to see.

4.3.4 Areas of Concern and Development

Our main concerns for the project’s design focus on scalability, real-time processing, and security.
First, we must ensure that the solution can scale effectively as more drones and complex parameters
are added, such as diverse terrain, varying weather conditions, and larger no-fly zones. This requires
a system architecture that can handle a range of drone counts and increasingly complex
partitioning needs without significant loss in performance. Second, achieving reliable real-time
processing is critical for effective visualization and rapid drone response. Real-time updates are
essential for the application to support dynamic event handling, but they also introduce potential
latency challenges as the dataset grows or pathfinding complexity increases. Finally, security is a
priority as the system processes sensitive user-inputted geographic and event data. We need robust
security measures to prevent unauthorized access and ensure each user’s session is isolated and
protected from data breaches.

To address these concerns, we will follow agile development in the next semester, implementing
features iteratively and incorporating feedback from testing in various simulated scenarios. This
approach will allow us to evaluate system performance under different scales, refine real-time data
handling, and enforce security protocols effectively. By simulating conditions such as increased
drone fleets, complex no-fly zones, and security breach attempts, we can identify and address any
limitations early on, ensuring our system remains scalable, responsive, and secure.

4.4 Technology Considerations

Our project uses a mix of frontend, backend, database, and computational technologies to build a
robust, real-time drone visualization system. Here’s an overview of each technology choice, along
with strengths, weaknesses, and trade-offs made to balance performance, scalability, and security.

1. Frontend: JavaScript with React (or Vue)

Technology Choice: We selected JavaScript, specifically frameworks like React or Vue, to build an
interactive frontend that can handle complex, real-time data visualizations.

- Strengths: React and Vue are well-suited for real-time interactivity and state management,
allowing us to update the UI as drone positions and events change efficiently. Both
frameworks are widely used, well-documented, and supported by large communities, which
helps troubleshoot and maintain code quality.

- Weaknesses: As with any frontend framework, the responsiveness may degrade if there are
too many simultaneous updates or if the dataset grows large, potentially leading to slow
rendering.

- Trade-offs: We chose JavaScript frameworks for their speed in development and
interactivity. However, with increased data loads, we may face trade-offs in UI
responsiveness.

- Design Alternatives: Alternatives like Angular could provide stronger structure and
scalability but have a steeper learning curve. Another option could be WebGL for more
efficient handling of complex animations, but it requires more specialized knowledge and
would increase development time.

2. Backend: Python with FastAPI (or Django)

Technology Choice: Python, paired with FastAPI or Django, was chosen for its simplicity, extensive
library support, and compatibility with computational tasks like partitioning and pathfinding.

- Strengths: Python’s readability and extensive library ecosystem (NumPy, SciPy) support
complex calculations required for partitioning algorithms and data processing. FastAPI
offers high performance with async capabilities, critical for handling concurrent user
sessions and requests, while Django provides more built-in features and a robust structure
for larger applications.

- Weaknesses: Python could be faster in execution speed than languages like Go or C++.
This could lead to delays in real-time operations, especially with larger datasets.

- Trade-offs: While Python may not be the fastest choice, its ease of use and large
community support outweigh the need for optimizing real-time processing through faster
languages.

- Design Alternatives: Node.js could be used for backend development with the advantage
of a single language for both frontend and backend. However, it lacks Python’s
computational power, essential for our project’s algorithmic needs.

 3. Database: PostgreSQL

Technology Choice: We opted for PostgreSQL as the primary database for session data and user
inputs.

- Strengths: PostgreSQL is reliable, ACID-compliant, and supports complex queries and
indexing, making it ideal for managing and storing structured data securely. Its support for
JSON is also helpful for handling flexible data types.

- Weaknesses: PostgreSQL may not handle high write operations or extremely large datasets
as efficiently as NoSQL databases, which could become an issue if we scale to larger drone
fleets and more extensive input data.

- Trade-offs: We selected PostgreSQL for its balance of robustness, relational data
capabilities, and moderate scalability. Although it may not handle high-speed data
ingestion and some NoSQL options, it provides the security and structure we need.

- Design Alternatives: A NoSQL database like MongoDB could allow for faster scaling and
unstructured data storage, but it sacrifices the relational structure required for user
sessions and partitioned areas. Redis or a time-series database could be introduced for
high-speed data processing for high-traffic situations.

4. Partitioning Algorithm and Computational Libraries: Python with NumPy and SciPy

Technology Choice: We are using computational libraries in Python, including NumPy and SciPy,
for partitioning regions and processing data to calculate efficient drone paths.

- Strengths: These libraries are optimized for numerical computations and offer powerful
tools for mathematical operations, making them suitable for partitioning and pathfinding
tasks.

- Weaknesses: While suitable for smaller datasets, Python’s single-threaded nature and
interpreted code may lead to slower computation times for extensive datasets, which could
challenge real-time visualization requirements.

- Trade-offs: Python’s library support and ease of use for computational tasks make it a
strong candidate despite potential performance issues. We rely on efficient partitioning
algorithms to mitigate this, optimizing code to keep processing times within real-time
constraints.

- Design Alternatives: Implementing computational tasks in C++ or using specialized
libraries like Boost or OpenCV could reduce processing time but would increase
development complexity and may limit flexibility in algorithm testing and adjustments.

5. Real-Time Processing: WebSocket

Technology Choice: WebSocket manages real-time data transfer between the back and frontend,
enabling continuous updates as drones move and respond to events.

- Strengths: WebSocket provides full-duplex communication, allowing for persistent
connections essential for real-time applications. This ensures the application responds
immediately to event updates and drone movements.

- Weaknesses: WebSocket connections can be resource-intensive, particularly under high
loads. If many users are connected simultaneously, server strain could increase significantly.

- Trade-offs: WebSocket ensures low-latency updates, but robust server infrastructure is
required to handle potential high loads.

- Design Alternatives: Alternatives like Server-Sent Events (SSE) could be simpler to
implement for lightweight data streaming. However, they are not bi-directional and may
not be as responsive for real-time interaction. Alternatively, using REST for periodic
updates would simplify server load but lack the responsiveness needed for real-time
visualization.

6. External Pathfinding API

Technology Choice: We rely on an external pathfinding API to calculate optimized flight paths that
avoid no-fly zones and minimize response times.

- Strengths: The API reduces our internal workload for pathfinding and provides specialized
algorithms optimized for handling geographic constraints.

- Weaknesses: Dependence on an external API could lead to latency, especially if the API
needs to handle requests quickly enough for real-time application needs. It also introduces
potential security concerns with third-party data transmission.

- Trade-offs: The API offloads complex calculations, but reliance on a third-party service
risks response-time delays. We mitigate this by caching routes when possible.

- Design Alternatives: We could implement custom pathfinding algorithms internally to
reduce reliance on third-party services. However, this would increase development
complexity, and implementing high-performance algorithms may require additional
expertise.

By balancing the strengths and limitations of each technology, we aim to create a scalable, secure,
and responsive solution. Through agile development, we will test these components under varied
scenarios to ensure they meet project requirements and deliver an optimized experience.

4.5 DESIGN ANALYSIS
As of right now, we have implemented and built a good portion of the frontend. We cannot make
the backend at this time due to the fact that the PhD student making the pathfinding algorithms is
not complete with his work, so we cannot process the data that users can give. It looks to be
working great so far however, the user has a great way to input data as of right now, and should be
easily parsable to be sent to the backend when we get to that point. For future implementation we
want to develop the backend and get that data to be processed so our users can see how the drones
should be flying within their respective partitions.

5 Testing
In this section we will discuss the testing methodology that will be applied for the development of
this project. There will be tests for both the functional and non-functional requirements, as
mentioned previously in section 1. This will be done to verify that the functional requirements are
working as expected, and that the non-functional requirements are meeting the needs of our
clients/advisor. Luckily with our product there are no cost related requirements as we are just
developing a visualization system. When the components of our project are implemented, we will
run them through unit, interface, integration, system, and regression tests. After these tests are
completed we will discuss the results with our advisor to find areas of improvement for further
development. Each of the subsections below will outline each of the particular tests to be
performed throughout our development cycles.

5.1 UNIT TESTING

Unit testing will consist of testing the individual units that make up the project. When we refer to
testing units, we are referring to the GUI components, classes, and methods that we develop for this
project. On the front end of things, since we are utilizing React+Vite we are able to utilize the Jest
framework in order to test individual components to ensure they are doing their expected job
before integrating them to our overall project. As for the Python in the backend, we will need to test
each individual function, as well as ensure that they work alongside our MapBox API and our Grad
student’s API.

5.2 INTERFACE TESTING

The interface testing will be tested through the combination of multiple units. These combinations
will ensure that the interface of the application will be able to be successfully implemented. Our
general interfaces are:

1. The grad students algorithm (GSA)
2. Our python backend
3. Our UI to display everything
4. The MapBox API

The backend will need to be able to discuss with the GSA in order to be able to display the proper
drone data. This will in turn require us to write functions that take what comes back from the GSA
and be able to feed it into the MapBox API to display drones moving to our users. Of course this will
need to be able to be shown on our frontend in order to display the map, with the algorithm’s
working data, as well as the drones’ movement and response to events.

5.3 INTEGRATION TESTING

Integration testing will be completed by breaking the system into several different major
functionalities and then testing each functionality separately from each other. This will ensure that
all of these functionalities are performing as anticipated and will be able to send the correct data
between one another. Some of the critical paths would be tracing through certain functions in the
backend to ensure that data is being calculated correctly, ensuring that the data we receive through
API operations is what is as anticipated, and ensuring that data being sent to the frontend is being
used correctly and displaying what is needed for the user.

5.4 SYSTEM TESTING

System testing will be completed by running multiple integration tests together to verify that
throughout an application run, we are seeing expected results at each step and that data is being
properly displayed to the user. This is vital to the system, ensuring that if the user selects a location,
this will go through the API and the response will go back to the UI and into the backend to
compute data which will be computed and rerouted back to the UI. In order to perfect this, we will
chain together the corresponding integration, interface, and unit tests. The critical requirements
will be verified by utilizing all of these system tests.

5.5 REGRESSION TESTING

Regression testing will be done by running all the previously existing unit, interface, and system
tests to ensure that nothing has changed from our previously expected results. On top of this we
will be manually verifying the system functionality in order to determine that every part of the
system is still functional for our users. Critical requirements will also be checked to ensure that
there are no changes from the new implementations. This includes: UI display, path generation for
the drones, partitioning algorithms, as well as API communications.

5.6 ACCEPTANCE TESTING

Acceptance testing will be done by analyzing both the functional and non-functional requirements
that we created and ensuring they are not being violated. For the functional requirements we will
be creating a set of use cases for functions within the application. These use cases will cover all
possible scenarios that a user could do when utilizing the application, and will be followed as test
routes within to ensure anticipated performance. As for the non-functional testing, we will be
mostly demonstrating the application to our advisor to ensure that the project requirements are
being met. For each major development within the project we will demonstrate it to our advisor
and listen for feedback to improve upon, come the following meeting. Once our advisor has
acknowledged that the application is meeting the requirements, we will be satisfied with the
development.

5.7 RESULTS

As the project continues to be developed, it will be tested thoroughly utilizing the testing
techniques described in the above sections. There will be many cases that are created to ensure that
all written code is tested and produces the desired results. Based on the results that come back,
performance will be evaluated and changes will be made as necessary. This will help motivate all
goals that were created for this project.

6 Implementation
From our plans in section 3.3, the project is continuing along just as the plan describes. There is a
great foundation of the frontend as shown in Figure 7 and 8 and a good idea of what the overall
system architecture will look like. The team is still wrapping up the design phase of the process,
and will dive heavier into the implementation in the second semester of class.

The implementation will consist of a code base and making visualizations with the map. Our team
will also be developing data transfer between the frontend and the backend. Both of these processes
will help get the implementation phase going smoothly for the second semester.

7 Ethics and Professional Responsibility
This discussion is with respect to the paper by J. McCormack and colleagues titled “Contextualizing
Professionalism in Capstone Projects Using the IDEALS Professional Responsibility Assessment”,
International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

We will be utilizing the SE code of ethics for this section of the document as shown in Table 4
below.

Area of Responsibility Definition NSPE Canon Differences between
NSPE and SE Code of
Ethics

Work Competence Perform work of high,
quality, integrity,
timelines, and
professional
competence.

Perform services only
in areas of their
competence. Avoid
deceptive acts.

SE code says
engineers need to
make sure products
are meeting the
highest professional
standards. NSPE does
not define that
engineers work only
within their
competences.

Financial
Responsibility

Deliver products and
services of realizable
value at reasonable
costs.

Act for each employer
or client as faithful
agents or trustees.

SE code says to act
with the client and
best public interest.
NSPE says to act as
the client or trustee.

Communication
Honesty

Report work
truthfully, without
deception, and
understandable to
stakeholders.

Issue public
statements only in an
object and truthful
manner. Avoid
deceptive acts.

SE code describes that
engineers should act
with integrity. The
NSPE says instead
that engineers should
only speak objective
truth.

Health, safety, and
well-being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the public.

SE code describes
engineers to act with
public interest.
Whereas NSPE
describes that
engineers should hold
health and safety of
the public first and
foremost.

Property Ownership Respect property,
ideas, and
information of clients
and others.

Act for each employer
or client as faithful
agents or trustees.

SE code describes to
use public interest
with client and
employees. NSPE says
just to act as the
client or trustee.

Sustainability Protect the
environment and
natural resources
locally and globally.

SE code says to act in
the publics best
interest, whereas the
NSPE has nothing on
sustainability.

Social Responsibility Produce products and
services that benefit
society and
communities.

Conduct themselves
honorable,
responsibly, ethically,
and lawfully so as to
enhance the honor,
reputation, and
usefulness of the
profession.

SE code says
engineers should
advance society. NSPE
says to do this with
many with honor,
responsibility, ethics,
and to enhance the
profession.

Our team is doing very well in the communication honesty responsibility. All of us are very open
with the way we communicate with each other, and are very honest about the ideas that we all
come up with. There is no deception among us, and we are all able to work well together. Our
advisor is very aware of where we are at, and how we plan to go about achieving our goals for this
project.

We could likely improve the health, safety, and well-being responsibility. Currently we don’t really
see how we are all doing mentally, just to see how we are all doing on our work.

Our team is having weekly meetings where we discuss many of these responsibilities working
alongside the development of our project. This has been very beneficial to the advancement of our
goals and sprints.

7.2 FOUR PRINCIPLES

Table 5 illustrates the four principles of ethics as it relates to our project. Economic beneficence is
the most important broader context-principle pair within our project. This is due to the fact that we
will help many different groups of people save time and money with our design. The way we will do
this is by making our design as user friendly as possible. People will be able to see their potential
drone fleet setups responding to events that they would have.

We are currently lacking in public health, safety, and welfare nonmaleficence. This is because we
have not determined a way to prevent these drones from being used in a harmful manner. We may
try to improve in this area by having people put in specific drone models they want to use for their
fleets.

7.3 VIRTUES

1. Collaboration
a. This is the ability to work well with others. In terms of sharing ideas,

responsibilities, and resources to achieve common goals
b. We support this value by organizing team meetings, listening to one another, and

offering constructive feedback on design choices.
2. Respect

a. This is the ability to value skills, contributions, and perspectives of all team
members.

b. We support this virtue by fostering an environment where all opinions are
welcomed, allowing people to speak without interrupting, and resolving conflict in
swift and efficient manners

3. Accountability
a. This is the ability to take responsibility for your actions and decisions on the team.
b. We support this virtue by setting clear expectations, checking in regularly, and

focus on solutions rather than blaming people for things that may end up
happening during development.

8 Closing Material

 8.1 CONCLUSION

At this current stage of development, we have completed a frontend prototype that demonstrates
how we want the website to look and feel for our users. The backend has very little work done on it
as we are still awaiting the grad student’s pathing and partitioning algorithms (if this takes too long
we will begin working on this ourselves). Our goal is to have a fully functional backend and
frontend communication that can allow the user to put in the required information they need, and
then have the backend process that data to visualize what the user wants back on the frontend. We
will do this by working closely as a team and communicating at a high level to ensure all of us are
on the same page. For the upcoming semester we will be meeting twice a week to better coordinate
and understand what all of us are working on to ensure a fulfilled deliverable.

8.2 REFERENCES

[1] Bobby Sudekum. “Don’t Fly Drones Here.” Medium, Mapbox, 21 July 2014,
blog.mapbox.com/dont-fly-drones-here-928dee4389e8. Accessed 4 Dec. 2024.

[2] G. Attenni, V. Arrigoni, N. Bartolini and G. Maselli, "Drone-Based Delivery Systems: A Survey
on Route Planning," in IEEE Access, vol. 11, pp. 123476-123504, 2023, doi:
10.1109/ACCESS.2023.3329195. keywords: {Drones;Surveys;Job shop
scheduling;Industries;Trajectory planning;Task analysis;Path planning;Product delivery;Urban
areas;Drone delivery;drone route planning},

[3] Saeed H. Alsamhi, Ou Ma, Mohammad Samar Ansari, and Faris A. Almalki. 2019. Survey on
collaborative smart drones and Internet of Things for improving smartness of smart cities. IEEE
Access 7 (2019), 128125–128152. https: //doi.org/10.1109/ACCESS.2019.2934998

[4] Ambuj Kumar and Bilal Muhammad. 2018. On how Internet of Drones is going to revolutionise
the technology application and business paradigms. In Proceedings of the 2018 21st International
Symposium on Wireless Personal Multimedia Communications (WPMC’18). 405–410.
https://doi.org/10.1109/WPMC.2018.8713052

[5] Jao Valente. 2014. Arial Coverage of Path Planning Applied to Mapping. Ph. D. dissertation.
Polytechnic University of Madrid.

[6] Ouri Wolfson, Prabin Giri, Sushil Jajodia, and Goce Trajcevski. 2021. Geographic-region
monitoring by drones in adversarial environments. In Proceedings of the 29th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL’21). ACM, New
York, NY, 480–483. https://doi.org/10.1145/3474717.3484216

[7] Z. Qin, A. Li, C. Dong, H. Dai, and Z. Xu. 2019. Completion time minimization for multi-UAV
information collection via trajectory planning. Sensors (Basel) 19, 18 (2019), 4032.

[8] “Enterprise Drone Autonomy Software Platform | FlytBase,” www.flytbase.com.
https://www.flytbase.com/

[9] “Drone & UAV Mapping Platform | DroneDeploy,” Dronedeploy.com, 2019.
https://www.dronedeploy.com/

https://doi.org/10.1145/3474717.3484216
https://www.flytbase.com/
https://www.dronedeploy.com/

8.3 APPENDICES

The algorithm is provided by our advisor, however it is not yet created. It will be linked here when it
is completed.

9 Team

9.1 TEAM MEMBERS

1. Nicholas Kokott
2. Sam Russett
3. Everett Duffy
4. Melani Hodge
5. Kenneth Schueman
6. Cole Stuedeman

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Frontend Development - TypeScript, JavaScript, React+Vite

Backend Development - Python, OOP development, Database Communication, Session Storing

Overlapping skills - Socket Communication, JSON

9.3 SKILL SETS COVERED BY THE TEAM

For the frontend skills - Kenneth Schueman, Melani Hodge, Nicholas Kokott

For the backend skills - Kenneth Schueman, Nicholas Kokott, Everett Duffy, Samuel Russett

For the overlapping skills - Kenneth Schueman, Nicholas Kokott, Cole Stuedeman

PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

For this project our team will be utilizing the agile development methodology, as we have all
experienced it in the past, and feel that it would be beneficial to continue using it.

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

For this project, we will be adopting an agile form of project management.

9.5 INITIAL PROJECT MANAGEMENT ROLES

Nicholas Kokott - Team Organizer

Melani Hodge - Frontend design/implementation

Cole Stuedeman - Testing

Everett Duffy - Component/Module Design

Ken Schueman - Advisor Communication and Frontend maintainer

Samuel Russett - Research Discovery and Testing

9.6 TEAM CONTRACT

Team Name: Attack of the Drones (sdmay25-21)

Team Members:
1. Nicholas Kokott
2. Sam Russett
3. Everett Duffy
4. Melani Hodge
5. Kenneth Schueman
6. Cole Stuedeman

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
a. Mondays at 6:10 at SICTR 0107

2. Preferred method of communication updates, reminders, issues, and
scheduling (e.g., e-mail, phone, app, face-to-face):

a. We will use the phone generally as more of us will see it on the fly
rather than checking our emails, but if we need to involve our
advisor, we will utilize either our face-to-face meeting or email if that
is not close.

3. Decision-making policy (e.g., consensus, majority vote):
a. We will be doing a majority vote for many of the decisions

4. Procedures for record keeping (i.e., who will keep meeting minutes, how
will minutes be shared/archived):

a. Nicholas Kokott will keep the meeting minutes; others will also take
notes. However, these meeting minutes will be stored in our Senior
Design Google Drive folder and will be accessible in the meeting
minutes folder.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

a. Everyone should arrive at least 5 minutes early to ensure we are on
time for the professor. If anyone cannot make a meeting, they will
email the professor and the team about what is happening. We will
fill them in when we see them in class the following day.

2. Expected level of responsibility for fulfilling team assignments, timelines,
and deadlines:

a. We will equally contribute to the team assignments and complete
them to the best of our abilities by the day before the deadline so
that we can make modifications if needed. We will all communicate
to ensure that this happens promptly and that we are all on the same
page with our assignments.

3. Expected level of communication with other team members:
a. We will communicate daily about what we are doing and

contributing to the project. We will discuss what we have been
researching and figuring out and what could be useful when
designing the project.

4. Expected level of commitment to team decisions and tasks:
a. As for team decisions, we will be all committed to discussing

anything we are deciding on and ensuring that we come up with the
best possible solution to any problems we face. When we start
getting to individually assigned tasks, we will each be responsible for
each task we are assigned and complete them by the given deadlines
we set. Doing this will ensure we stay on task and can complete the
project by the end of the year.

Leadership

1. Leadership roles for each team member (e.g., team organization, client
interaction, individual component design, testing, etc.):

a. Nicholas Kokott will be responsible for the team organization
b. Kenneth Schueman will be in charge of advisor communication
c. Cole Stuedeman will be in charge of testing the design that we have

been making.
d. Everett Duffy will be responsible for the individual component

design if needed.
e. Samuel Russett will be in charge of research discovery and

distribution.
f. Melani Hodge will be in charge of algorithm design, ensuring they fit

what we are given.
g. We will all be responsible for movement towards development of the

project.
2. Strategies for supporting and guiding the work of all team members:

a. To support and guide the work of all team members, we will
continually talk and contribute ideas to each other daily to keep our
minds on the project. As well as this, if a member is struggling, we
will have one or two members come in to assist and see what may be
delaying the individual. If none of us can figure it out we will be
asking the advisor what we can do to solve the problem.

3. Strategies for recognizing the contributions of all team members:
a. This is very important, as all members should feel valued within the

team. We will continually acknowledge each other's work and thank
them for contributing to the team. We will also discuss our
contributions with our advisor to demonstrate to him that we are all
contributing.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member
brings to the team.

a. Nicholas Kokott - brings embedded systems and cybersecurity
experience to the team, virtual machines, and docker experience.

b. Kenneth Schueman - brings lots of AI knowledge and profound
programming experience to the team

c. Everett Duffy - brings the computer engineering expertise on the
team which will be vital when we start getting to the drones

d. Cole Stuedeman - brings great coding experience and vast
communication skills.

e. Samuel Russett - brings fantastic app development skills and
operating system understanding.

f. Melani Hodge - brings great understanding of algorithms and design
experience to the team

2. Strategies for encouraging and supporting contributions and ideas from all
team members:

a. In order to support and encourage contributions we will
continuously discuss things that pop into our minds in order to see
what might be the best solution. We are all aware that we don’t know
everything by any means and that we are all learning about
computational geometry. So, we will push forward any new
techniques we read and encourage others to read and learn about it
as it might be incredibly beneficial for everyone to see.

3. Procedures for identifying and resolving collaboration or inclusion issues
(e.g., how will a team member inform the team that the team environment
is obstructing their opportunity or ability to contribute?)

a. If a team member is having trouble contributing, they will just come
forward and address the issue with the rest of the team. Everyone on

the team will be open to hearing what the issue is and be willing to
change or help stop the obstruction that the individual is having at
the time. If that does not work, we will have a team meeting to
determine what we can do to fix the problem.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Our team goals for this semester are to research and plan for our

project. We need to gain knowledge and understanding of
background, formulas, and similar projects that have been done to
develop a successful prototype. We plan to begin constructing our
prototype towards the end of this semester.

2. Strategies for planning and assigning individual and teamwork:
a. We will continuously analyze, see who does not have work to do or is

close to completing their tasks, and give them something to work on.
If there is a gap in the assignments or development, we will have
them go look at research on the things we are curious about to
understand better potential implementations for any problems that
we are currently having.

3. Strategies for keeping on task:
a. To stay on task, we have deadlines for the assignments already put in

place. Outside of that we have already set up a Google calendar with
due dates on our things or things our advisor has been giving us.
This will gie us reminders on our laptops and other devices to better
stay on track and ensure we do a great job.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team
contract?

a. We will reach out to the individual who breaks the contract and
encourage them to continue to push towards our collective goal.
Also, we will let the advisor know that this person may begin to be a
problem if they are not cooperating with us.

2. What will your team do if the infractions continue?
a. If the infractions continue we will involve the instructors of the

course and inform them of whatever this person is doing. This
should be enough to stop them from breaking the contract
continually and get the team back on track for the rest of the
semester.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) Nicholas Kokott DATE 9/12/24
2) Kenneth Schueman DATE 9/12/24
3) Cole Stuedeman DATE 9/12/24
4) Everett Duffy DATE 9/12/24
5) Samuel Russett DATE 9/12/24
6) Melani Hodge DATE 9/12/24

	Distributing a Fleet of Drones over an Area with No-Fly Zones
	Executive Summary
	Learning Summary
	DEVELOPMENT STANDARDS & PRACTICES USED
	SUMMARY OF REQUIREMENTS
	APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
	NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

	Table of Contents
	Tables and Figures
	TABLES
	FIGURES

	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2 Requirements, Constraints, And Standards
	2.1 REQUIREMENTS & CONSTRAINTS
	UI REQUIREMENTS
	SECURITY REQUIREMENTS
	BACKEND REQUIREMENTS
	ECONOMIC REQUIREMENTS
	RESOURCE REQUIREMENTS
	PHYSICAL REQUIREMENTS
	2.2 ENGINEERING STANDARDS

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	Target Solution Comparison:
	-Pros:

	4.1.3 Technical Complexity
	Subsystems:
	Challenging Requirements:

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 PROPOSED DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Concern and Development
	4.4 Technology Considerations

	4.5 DESIGN ANALYSIS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 RESULTS

	6 Implementation
	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES

	8 Closing Material
	 8.1 CONCLUSION
	8.2 REFERENCES
	8.3 APPENDICES

	9 Team
	9.1 TEAM MEMBERS
	9.2 REQUIRED SKILL SETS FOR YOUR PROJECT
	9.3 SKILL SETS COVERED BY THE TEAM
	9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	9.5 INITIAL PROJECT MANAGEMENT ROLES
	9.6 TEAM CONTRACT

