
Distributing a Fleet of Drones
Over a Region with No-Fly

Zones
Team: sdmay25-21

Client/Advisor: Professor Goce Trajcevski

https://sdmay25-21.sd.ece.iastate.edu/

1

https://sdmay25-21.sd.ece.iastate.edu/

Team

● Nicholas Kokott - Team Organizer

● Melani Hodge - Frontend Design/Testing

● Everett Duffy - Component/Module Design

● Cole Stuedeman - Testing

● Kenneth Schueman - Advisor Communication

● Samuel Russett - Research Discovery and Testing

2

Project Overview
● Goals:

○ Minimize worst case response time through partitioning
○ Shortest Path/No Fly Zone Avoidance

● Objective:
○ Provide UI Displaying Drone Flight Interaction
○ Automatic event management

3

Target Users

● Delivery

- Package delivery in crowded urban areas

● Search and Rescue

- Emergency response and location

● Civilian Hobby Flight

- Avoidance of military airspace and other

restricted areas

4

Requirements

5

Non-Functional Requirements and Constraints

● Flexibility in configuration

● Architecture provided by ETG

● Consider response limitations

● Consider cost constraints

The full list of non-functional requirements can be found in our design document (p.8) 6

Functional Requirements

● Enable algorithm selection

● Allow users to…
○ input number of drones
○ input events
○ start and top simulation
○ navigate UI

● Ease of use for those unfamiliar with
drone use or code.

The full list of functional requirements can be found in our design document(p. 7-8) 7

Standards

● IEEE 1471 (Software Architecture Standard)
○ Needs real-time interactions
○ Multiple components(UI, algorithms, eternal API)
○ Architecture documentation

● ISO/IEC 27000 (Information Security)

○ The requirements explicitly mention security concerns
about attackers

○ Each session needs to be unique and secure
○ The system handles real-world location data that must be

protected

8

System Design - Global
Architecture

9

Global Architecture

● Take data from frontend
and push to backend

● Do backend calculations
(partitioning) and display
back to frontend

● Have users input events,
and push locations to
backend to handle

● Relay back to frontend and
show drone pathing

10

Functionality

● User Interaction (Purple)

○ Enter inputs

○ Select events within
partitions

● Backend (Blue)

○ Calls APIs

○ Performs algorithmic
functions to:

■ Create partitions

■ Create flight path

11

System Design - Frontend

12

Frontend Foundation

React (Vite Toolkit)

● Strengths: Component-based, large ecosystem for
tools, support for TypeScript

● Weaknesses: Complex in large apps, needs extra tools
for state management

● Trade-offs: Flexible but requires structuring and state
decisions

● Alternatives: Vue (easier learning), Svelte (faster,
smaller ecosystem)

https://iconduck.com/icons/13180/react-original-wordmark

13
https://iconduck.com/icons/13281/vite-watermark

Frontend Specifics

14

MapBox

● Strengths: Open Source, endlessly customizable, and
free

● Weaknesses: Complex to render objects, shapes, and
text elements

● Trade-offs: As stated above its Open Source and
customizable, so we had to create our own features

● Alternatives: Google Maps, GeoServer, and MapServer
https://iconduck.com/icons/17340/rmapbox

UI Design - No Fly-Zone selection and partitioning

15

UI Design - No Fly-Zone selection and partitioning

16

System Design - Backend

17

Backend

Django (Python)

● Strengths: Comprehensive tools, secure, great with
PostgreSQL/PostGIS

● Weaknesses: Overhead in microservices and API
setups

● Trade-offs: Fast, secure but less modular

● Alternatives: Flask (lighter), FastAPI (async,
real-time)

https://en.wikipedia.org/wiki/Python_%28programming_language%29

18

Backend

PostgreSQL with PostGIS

● Strengths: Robust, excels in complex
geospatial queries

● Weaknesses: Resource-heavy, requires
expertise

● Trade-offs: Powerful but demanding

● Alternatives: MySQL (limited GIS), MongoDB
(simpler, fewer features)

https://www.linkedin.com/pulse/aprender-postgresql-y-postgis-juan-carlos-jaramillo-ceballos-t4uhe/

19

Demo Video

20

https://docs.google.com/file/d/1r1V7IgH2MtCfutCfB8jKqnbzGcg-aCUh/preview

Challenges

21

Main Issues Faced
● Pathfinding the Drones

○ The way the database was setup did not allow for the

drones to pathfind in a traditional algorithm (Dijkstras,

AStar, etc.)

○ Instead, we precomputed the path while checking if

no fly zones were there

● Integration with Grad Student’s code

○ No-fly zone generation and partitioning algorithms

were given, but documentation was poor

○ To solve this problem we had to trace through the

code manually to determine what needed to be

passed through
22

Risks & Mitigation

● Performance Issues

○ Real time performance, Algorithm scalability, Browser
compatibility

● User Data Security

○ Injection vulnerabilities, data accuracy, input validation

● Testing All Use Cases

○ Testing tools

23

Testing

24

Testing
● Unit Tests

○ Test individual components and functions in isolation (frontend, backend, and
integration logic)

○ Use Vitest for frontend tests (entering drone/user info in React forms)

○ Backend unit tests validate model behavior and data flow with GSA and
Mapbox compatibility

● Interface Tests

○ Test communication between Backend, Frontend, GSA, and Mapbox

○ Validate API endpoints (NoFlyDataViewTests) and request/response structure

○ Use serializer tests (NoFlySerializerTests) to confirm data transformation

accuracy

○ Mock external APIs to test parameter handling and error/success responses 25

Testing
● System Testing

○ Test complete workflows and system functionality end-to-end

○ Run drone path planning tests with no-fly zones
(DronePathNoFlyTest)

○ Validate integration of components like frontend, backend, GSA,
and FAA data loaders

● Regression Tests

○ Ensure new changes don’t break existing features

○ Use reusable test suites and specific regression cases
(ModelsRegressionTests)

○ Validate data integrity and behavior across edge cases
26

Conclusion

27

Final Thoughts

● Satisfied user requirements with efficient development techniques

● Be quick on your feet when it comes to necessary changes

● Future work and enhancements:
- Custom number of drones

- Drone/Application connection

- Expand country geojson

28https://freedesignfile.com/767114-unmanned-aerial-vehicle-drone-clipart/#google_vignette

https://freedesignfile.com/767114-unmanned-aerial-vehicle-drone-clipart/

Questions?

29

Testing
● Acceptance Testing

○ Verify system meets all functional and non-functional requirements

○ Use case-based testing focused on real-world user workflows

○ Ensure critical features behave correctly from the user's perspective

30

Project Plan

31

Project Plan - Tasks

● Set up frontend (React+Vite) and Backend (Python + PostgreSQL)

● Develop Communication sockets

● Algorithm implementation

● Incorporate MapBox API

● Develop UI and backend API

● Test everything

● Develop input systems

32

Project Plan - Risks & Mitigation

● Performance Issues

○ Real time performance, Algorithm scalability, Browser
compatibility

● User Data Security

○ Injection vulnerabilities, data accuracy, input validation

● Testing All Use Cases

○ Testing tools

33

Project Plan - Gantt Chart (Spring 2025)

34

Ethics and
Professional
Responsibility
(extra slides)

35

Areas of Professional Responsibility

● Work Competence
○ Aim to get our work done quickly and with quality

● Communication Honesty
○ Always be honest with the team and problems we are facing

● Social Responsibility
○ Make the application with users in mind to benefit them

36

Virtues:

● Collaboration
○ Work well together and be honest

● Respect
○ Treat team members well and listen to them

● Accountability
○ Hold people accountable for their work

37

