
Distributing a Fleet of
Drones over an Area with

No-Fly Zones

DESIGN DOCUMENT

1

Executive Summary

This project is a web-based application designed to manage drone operations
within specified areas, including no-fly zones. The goal of the project was to create
an application where users can define their drone fleet size, the survey region, and
any restricted zones within that area. Currently, no applications efficiently map
no-fly zones and deploy multiple drones. This application will be one of the first to
utilize partitioning and pathing algorithms to manage multiple drones while
avoiding restricted areas. Upon starting the web application, the user can enter the
region, the no-fly zones, and the number of drones. Once the user selects the
inputs, the region will be split into partitions equal to the number of drones. After
the map is partitioned, the user will have the ability to add events to the map
therefore allowing drones to respond to these events based on which partition they
are in. First, for the frontend of this application, we used React and Vite which
utilizes both JavaScript and TypeScript. Next, for our map display, we used MapBox
API to display the region, drones, and partitions to the user. Finally, for the
backend, we used Python (Django) to run the algorithms used for partitioning and
drone management. Our backend code allows us to display drone routes back to
the UI for the user. Our current design meets the requirements and addresses the
users’ needs. We have extensively discussed with our client/advisor about what is
expected in the final design and what is running now matches what was expected.

2

Learning Summary
DEVELOPMENT STANDARDS & PRACTICES USED

- Agile Task Management Methodology
- Object Oriented Programming
- Data Structures
- IEEE Std 1012, Standard for Software Verification and Validation
- IEEE Std 1219, Standard for Software Maintenance
- IEEE/ISO/IEC 26512-2017, Requirements for acquirers and suppliers of information

for users
- IEEE Std 982.1, Standard Dictionary of Measures to Produce Reliable Software
- IEEE/ISO/IEC 15288-2015, System life cycle processes

SUMMARY OF REQUIREMENTS

- Design a web application that allows users to place events for drones to respond to
- User should be able to input number of drones, location, and no-fly zones
- User should be able to determine which pathing algorithm they would like to

utilize for their drones
- UI should be clean and easy to use
- Application should respond quickly and be able to demonstrate drone flight

correctly

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

- CS 227: Object Oriented Programming
- CS 228: Introduction to Data Structures
- CS 309: Software Development Practices
- CS 317: Introduction to Software Testing
- CS 311: Introduction to the Design and Analysis of Algorithms
- CS 319: Construction of User Interfaces
- CS 327: Advanced Programming Techniques
- CS 329: Software Project Management
- CS 352: Operating Systems Concepts

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

- React+Vite
- TypeScript
- Python/Django
- MapBox API
- Containerization (Docker)

3

Table of Contents
Executive Summary.. 2
Learning Summary... 3

Development Standards & Practices Used..3
Summary of Requirements.. 3
Applicable Courses from Iowa State University Curriculum... 3
New Skills/Knowledge acquired that was not taught in courses.. 3

Table of Contents..4
Tables and Figures.. 6

Tables...6
Figures... 6

1 Introduction... 7
1.1 Problem Statement.. 7
1.2 Intended Users...7

2 Requirements, Constraints, And Standards..9
2.1 Requirements & Constraints.. 9
2.2 UI Requirements...9
2.3 Security Requirements... 9
2.4 Backend requirements... 9
2.5 Economic Requirements... 10
2.6 Resource Requirements.. 10
2.7 Physical Requirements.. 10
2.8 Engineering Standards..10

3 Project Plan... 12
3.1 Project Management/Tracking Procedures.. 12
3.2 Task Decomposition.. 12
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria... 13
3.4 Project Timeline/Schedule... 14
3.5 Risks and Risk Management/Mitigation..15
3.6 Personnel Effort Requirements.. 16
3.7 Other Resource Requirements..17

4 Design... 18
4.1 Design Context...18

4.1.1 Broader Context.. 18
4.1.2 Prior Work/Solutions...18

Target Solution Comparison:... 19
- Pros:... 19

4.1.3 Technical Complexity.. 19
Subsystems:... 19
Challenging Requirements:... 20

4

4.2 Design Exploration... 20
4.2.1 Design Decisions... 20
4.2.2 Ideation.. 21
4.2.3 Decision-Making and Trade-Off..22

4.3 Final Design...22
4.3.1 Overview.. 22
4.3.2 Detailed Design and Visual(s)..25
4.3.3 Functionality... 27
4.3.4 Areas of Challenge.. 27
4.4 Technology Considerations.. 28

4.5 Design Analysis..31
5 Testing...32

5.1 Unit Testing..32
5.2 Interface Testing..32
5.3 Integration Testing.. 33
5.4 System Testing.. 34
5.5 Regression Testing.. 34
5.6 Acceptance Testing... 34
5.7 User Testing... 35
5.8 Results..35

6 Implementation... 37
6.1 Design Analysis..37

7 Ethics and Professional Responsibility... 39
7.1 Areas of Professional Responsibility/Codes of Ethics...39
7.2 Four Principles...41
7.3 Virtues.. 41

8 Conclusions.. 43
8.1 Summary of Progress.. 43
8.2 Value Provided.. 43
8.3 Next Steps..43

9 References.. 44
10 Appendices..45

Appendix 1 - Operation Manual.. 45
Appendix 2 - Alternative/Initial Version of Design.. 61
Appendix 3 - Code.. 62
Appendix 4 - Team Contract..64

5

Tables and Figures
TABLES

● Table 1: Task Decomposition (Section 3.2)
● Table 2: Expected Individual Contribution (Section 3.6)
● Table 3: Actual Individual Contribution (Section 3.6)
● Table 4: Broader Context (Section 4.1.1)
● Table 5: Code of Ethics (Section 7.1)
● Table 6: Ethics Four Principles (Section 7.2)

FIGURES
● Figure 1: Gantt Chart (Section 3.4)
● Figures 2-5: Frontend Design (Section 4.3.1)
● Figure 6: Global Architecture (Section 4.3.2)
● Figure 7: Functionality (Section 4.3.2)
● Figure 8-18: Frontend Implementation (Section 10.1)
● Figure 19: First Design Proposal (Section 10.2)
● Figure 20: Models of data structures setup in database (Section 10.3)
● Figure 21: Routing of individual API calls (Section 10.3)
● Figure 22: Important settings found within settings.py(Section 10.3)
● Figure 23: Example of the .env file for the backend (Section 10.3)

6

1 Introduction

1.1 PROBLEM STATEMENT

In the last several years, drones and automation have become incredibly popular tools for
many scenarios. This mostly comes from the recent affordability for the average drone and
automation consumers, but also due to the wide variety of applications drones can be
utilized for. Many people may think drones are simply utilized for scanning environments
and video work. Still, they also can be used for search and rescue operations, delivery
services, as well as maintenance work. However, many of these drones cannot be used in
an automated manner but rather have drawn out flight paths and event management. It
would be significantly more straightforward to have all of this automated so that many
important resources delegated to planning could be used elsewhere.

This project aims to develop a web application that allows users to input a given area or
dataset of no-fly zones, as well as several drones, and then be able to visualize how these
drones would respond to events within that given environment. Depending on the number
of drones that are given, the area will be partitioned into smaller areas that avoid no-fly
zone regions while optimizing response time to critical events. Each drone will be limited
to responding to events within their partitioned region to ensure the fastest response
times. Specifically, this project considers scenarios that users can utilize in the real world
and can see drone responses to events in real-time.

1.2 INTENDED USERS

The project aims to create a visualization for users to see an automated fleet of drones over
areas the users consider important. Due to this, there are many different users, with
several different use cases that can be considered.

1. Emergency Services

a. Drones will respond to natural disaster events and evaluate damages

 i. Weather damage ii. Wildfires

iii. Floods iv. Volcanic Activity

b. Police usage

 i. Search large regions and rescue people in need

ii. Track crimes that could be occurring

c. Firefighters

i. Track the shape of a large fire and find potential sources

ii. Mark buildings that have fires

2. Delivery of Goods

7

a. Grocery store deliveries

b. Supply deliveries for disaster relief

c. Pharmaceutical deliveries

3. Agriculture

a. Water crops that are too dry

b. Monitor different land regions

c. Spread fertilizer in needed locations

4. Infrastructure

a. Monitor electrical elements of cities (power lines, generators, transformers)

b. Perform basic repairs on rooftops

8

2 Requirements, Constraints, And Standards

2.1 REQUIREMENTS & CONSTRAINTS

Our project has many requirements that can be divided and organized into several
categories listed below:

2.2 UI REQUIREMENTS
- Users are able to input the number of drones, the location to be used, as well as

no-fly regions to be shown to them

- Users are able to see the partitioned regions with one drone per region

- Users are able to see the output of the algorithm in real-time

- Users are able to see the movement of the drones in real-time

- Users are able to input events for the drones to respond to

- Users are able to start/stop the simulation at any time

- Users are able to navigate to the home, contact, and About pages

- Users are able to select the pathing algorithm they desire most

2.3 SECURITY REQUIREMENTS
- Users can input real-world data without an attacker being able to compromise

- The server will stay active and not be broken into by outside actors

- Each session will be unique to each user and cannot be repeated unless the same
information is provided

2.4 BACKEND REQUIREMENTS
- All data will be stored and used within each session

- The backend will be fresh with no stored data in each new session

- The backend will call out to external pathing API to path the drones and their
respective flights

- The backend will take in data from the frontend as users provide it and use it to
determine how drones respond to events

- The backend will partition the map based on the users initial input of no-fly zones

- The backend will do all algorithmic calculations

9

- The backend will perform the selected pathing algorithm from the frontend

2.5 ECONOMIC REQUIREMENTS
- Will need to host a server for x amount of dollars

2.6 RESOURCE REQUIREMENTS
- Each drone used will be equipped with high-precision sensors, GPS, IMUs,

cameras, and navigation systems that can call out to our API.

- The server used must be powerful enough to perform real-time calculations of
flight paths, process large datasets, and support concurrent drone operations
without delays.

2.7 PHYSICAL REQUIREMENTS
- Drones must be able to operate effectively through the 2D space that the user gives.

- Drones must withstand weather conditions (heat, rain, cold).

2.8 ENGINEERING STANDARDS

Engineering standards are important as they will ensure safety, quality, and consistency
across engineering projects. They help engineers use a common language and set of
expectations that allow them to collaborate, regardless of their location or background
efficiently. With these standards in place, engineers can avoid errors, streamline processes,
and foster innovation through a shared understanding of practices.

These standards are very much relevant to our project. The first one discusses how to
properly layout your architecture and connect your frontend and backend components to
be of quality and look good to your users. Developing things isolationally will allow us to
scale our product and its components properly without interfering with our other
components or services. The second standard discusses how to securely manage our users'
sessions and ensure that an outside source cannot access their data. This will be vital to
the project as this is one of the main points. Regarding the third standard, we will need to
test our algorithms regarding partitioning and drone flight paths. This will need to happen
to ensure the proper outcomes for our users.

IEEE 1471 (Software Architecture Standard) is crucial because:

● The project involves complex real-time interactions between frontend and backend
● Multiple components need to interact (UI, backend algorithms, external API calls)
● The system needs to be scalable to handle multiple drone operations
● Architecture documentation will be essential for maintaining the system

10

ISO/IEC 27000 (Information Security) is relevant because:

● The requirements explicitly mention security concerns about attackers
● Each session needs to be unique and secure
● The system handles real-world location data that must be protected

11

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will adopt an Agile development methodology with 2-week sprints for this project. This choice
is justified by:

- The need for frequent user feedback on UI/UX elements
- Complex requirements that may need refinement through iterations
- The ability to deliver incremental functionality
- The need to adapt to changing requirements as we better understand drone behavior

For this project, we will utilize an agile development methodology with 2 week sprints. We decided
to do this because we will need frequent user feedback on UI/UX elements. We also have complex
requirements that may need refinement through several feedback iterations. As well as this we will
need the ability to deliver incremental functionality. With all the changing requirements we will be
having as well, this will be necessary to utilize.

Project tracking will utilize the following tools:

- GitHub: Source code version control and project documentation
- Jira: Agile project management, sprint planning, and task tracking
- Slack: Team communication and integration with GitHub/Jira
- Discord: Daily standups and team meetings
- Git Flow: Branch management strategy for feature development

As for project tracking we will be using GitLab, Discord, and Google Docs for this project. GitLab
will be the repository for our code and version control that we can see over time. Discord will be our
primary communications tool to discuss changes and functionality in an easy to use manner.
Google Docs is where we keep our documents, idea pools, and articles to read up on. It is a very
simple place to keep and manage all these things.

3.2 TASK DECOMPOSITION

 Table 1 below shows our task decomposition for semester 1 and semester 2 of senior design.

12

Task # Planned Completion Date Task Description
(Frontend)

Task Description
(Backend)

1 10/9/24 Setup React project structure Setup Python server

2 10/24/24 Implement map visualization
component

Implement session
management

3 11/01/24 Create drone control interface Develop map
partitioning algorithm

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Frontend Milestones

- Map visualization loads in < 2 seconds: Sprint 2
- UI responds to user input in < 100ms: Sprint 3
- Real-time updates achieve 60fps: Sprint 4
- 95% test coverage: Sprint 5

Backend Milestones

- The server handles 100 concurrent users: Sprint 3
- Path calculations complete in < 500ms: Sprint 4
- Area partitioning completes in < 1 second: Sprint 5
- API response time < 200ms: Sprint 6

Algorithm Milestones

- Partitioning algorithm optimality within 90%: Sprint 4
- Pathfinding completion in < 300ms: Sprint 5
- Collision avoidance accuracy 99.9%: Sprint 6

13

4 12/10/24 Develop no-fly zone input
system

Create drone path
calculation system

5 01/30/25 Build real-time event
visualization

Implement pathfinding
algorithms

6 02/20/25 Implement algorithm selection
interface

Build event response
prioritization

7 03/6/25 Create simulation controls
(start/stop)

Build real-time event
processing

8 03/21/25 Develop navigation
components

Implement external API
integration

9 04/10/25 Performance testing Performance testing

10 04/24/25 User acceptance testing User acceptance testing

11 05/01/25 API documentation Deployment pipeline
setup

- Event response time < 1 second: Sprint 7

Testing Milestones

- Unit test coverage > 80%: Sprint 5
- Integration test coverage > 70%: Sprint 6
- Load testing supports 1000 requests/second: Sprint 7
- Security penetration testing passed: Sprint 8

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1 shows our Gantt Chart depicting our timeline/schedule which includes sprints and goals
for each sprint.

Sprint 1-2 (Weeks 1-4):

- Form team
- Understand the idea
- Research potential technologies

Sprint 3-4 (Weeks 5-8):

- Define requirements
- Figure out testing, goals, and technologies
- Begin prototype design

Sprint 5-6 (Weeks 9-12):

- Develop the UI
- Figure out how backend should look

Sprint 7-8 (Weeks 13-16):

- Continue UI development
- Begin on backend

14

Sprint 9-10 (Weeks 17-20):

- Make partitioning algorithm
- Display partitioning to frontend
- Add event management

Sprint 11-12 (Weeks 21-24):

- Add in pathing
- Test all units, interfaces, systems
- Finish out the reporting

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

A. High Probability Risks (P > 0.5)
a. Real-time performance issues (P=0.7)

i. Mitigation: Implement WebSocket for real-time updates
ii. Fallback: Reduce update frequency

b. Algorithm scalability problems (P=0.6)
i. Mitigation: Implement caching and optimization

ii. Fallback: Limit maximum area size
c. Browser compatibility issues (P=0.6)

i. Mitigation: Use polyfills and progressive enhancement
ii. Fallback: Support the latest two versions of major browsers

B. High Severity Risks
a. Security vulnerabilities

i. Mitigation: Regular security audits
ii. Implementation of security best practices

b. Data Accuracy
i. Mitigation: Implement validation layers

ii. Regular calibration checks

The main issue that came to pass from this list was Real-time performance issues. This project had
outside code given from a grad student that was heavily relied upon, as it is the basis of our
advisor’s research. However, this code that was given is very slow and takes upwards of a minute to
compute based on how much data is fed into it. Anytime that no-fly zones or partitions are
generated for a given map, the time taken for a call is much higher than any other API calls that are
used in this project. To mitigate this, we tested with several different base map values to see if calls
took more or less time with differently sized maps. We found that using a map from 0 - 100 for both
latitude and longitude fixes this issue and reduces the time taken for those API calls. As well as this,
the given code was examined for bloat code and code that was not being used. From here it was
removed in order to allow for a better time complexity of the algorithm.

There was another issue with a security vulnerability when utilizing our websocket to communicate
real time data. When a user executes our code, we do not want an outside user to be able to peer
into that socket and see what a user is doing in real time. To fix this, a redis container was added to
the design to allow for safe key distribution between the user and the backend. With this container
running the project was no longer susceptible to any sort of websocket breach.

15

3.6 PERSONNEL EFFORT REQUIREMENTS

Table 2 below refers to the expected individual contribution and total time spent for completing the
design portion of the project.

Task # Estimated Completion Time (hours)

Frontend Initialization 18 (3 hours * 3 people)

Backend Initialization 18 (3 hours * 2 people)

Design and User Interactivity design 24 (8 hours * 3 people)

Algorithm and communications 24 (8 hours * 3 people)

Pipeline and continued workflow 30 (5 hours * 6 people)

Completion of design document &
presentation

558 (93 hours * 6 people)

Testing 12 (2 hours * 6 people)

Final Check 12 (2 hours * 6 people)

Finishing touches on presentation 18 (3 hours * 6 people)

Total: 720 (120 hours* 6 people)

Table 4 below refers to the actual individual contribution and total time spent for completing the
design portion of the project

Team Member Tasks Completed Time Spent

Nicholas Kokott Backend Initialization, API
design, Websocket setup and
design, Dockerization,
Database setup and design,
Integration of grad student
code, distribution of smaller
tasks, drone routing, geojson
parsing

168 hours

Kenneth Schueman Frontend initialization,
Frontend design, and
Frontend integration

144 Hours

Everett Duffy API design and integration,
Websocket drafting and

110 Hours

16

initialization, assistance with
testing, data structures, and
database development.

Melani Hodge Frontend Initialization and
Design, CI/CD Pipeline &
Practices, Dockerization for
the Frontend, Setup Server for
Frontend & Backend on AWS,
Testing in the Frontend with
RTL and Vite

120 hours

Samuel Russett Frontend Initialization,
Frontend Design, Frontend
Testing (standalone and
integration with backend)

82 hours

Cole Stuedeman Backend setup testing, API
testing, mapping testing,
geojson parsing testing all via
Django. Helped with geojson
parser implementation. Wrote
the majority of tests and
integrated unit, regression,
user, and acceptance testing in
their design.

112 hours

3.7 OTHER RESOURCE REQUIREMENTS

Develop Resources
- CI/CD pipeline tools
- Docker Containerization
- Development workstations
- Testing environments

Software Resources
- IDE licenses
- Mapping service API credits
- Testing framework licenses
- Monitoring tool subscriptions

Development Tools
- Jira licenses
- GitHub Enterprise
- Code analysis tools
- Performance monitoring tools

17

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The project primarily targets emergency response agencies, delivery services, and search-and-rescue
organizations. These stakeholders need systems to optimize the deployment of drone fleets for
efficient surveillance and rapid response over regions with no-fly zones. Indirectly affected
communities include urban residents or government authorities responsible for managing no-fly
zones. Additionally, industries reliant on drone technology for monitoring critical infrastructure or
agricultural areas may benefit. This project addresses the societal need for efficient and timely
emergency response, improved delivery services, or any form of drone deployment. It aims to
minimize delays in drone operations for any of the listed groups. Table 4 refers to the public health,
safety, welfare, global, cultural, social, environmental, and economic impacts or implications of our
proposed design.

Area Description Examples
Public health,
safety, and
welfare

The project improves the response time
of drones to emergencies, reducing risks
to human life and property.

Reducing delays in
search-and-rescue operations.
Enhancing public safety in
disaster-prone areas through rapid
response.
Decreasing safety risks by avoiding
drone collisions in no-fly zones.

Global,
cultural, and
social

The design reflects respect for cultural
practices by integrating with local
regulations, such as avoiding flight paths
over sensitive areas.

Adhering to airspace regulations in
proximity to airports or military
zones.

Environmental The system optimizes drone flight paths
to reduce energy consumption,
minimizing the environmental impact.

Decreasing unnecessary flight
distances for drones.

Economic The project aims to deliver a
cost-efficient system that benefits
emergency agencies and industries
without high overhead costs.

Reducing operational costs for
drone fleets by optimizing
deployments.
Creating economic opportunities
in drone technology for
underserved regions.

4.1.2 Prior Work/Solutions

Several systems exist for drone flight optimization, but few integrate no-fly zones and focus on
minimizing average response time. Research on partitioning a map for drone management has been
conducted, but these do not typically consider no-fly obstacles in their implementation. Some of
the applications also do not allow consumers to map their own no-fly zones. This could lead to
issues especially if a building or tree is not properly mapped in the flight path. Therefore, our

18

application could add this feature for users being able to map their own convex no fly zones. The
difference between our application and others is that our application will allow a user to input a
number of drones that will then be used to partition an area in sections to reduce the response time
of each drone in that area. Most applications similar to this project do not have this feature;
therefore, we can take advantage of this opportunity gap to give users this ability.

Target Solution Comparison:

- Pros:
- Direct integration of no-fly zones into partitioning algorithms.
- Visualization and interactive user interface to aid decision-making.
- Minimized response times for practical scenarios.

- Cons:
- Dependence on high-quality obstacle data.
- Computational overhead for real-time partitioning with large datasets

Some relevant products similar to our own include FlytBase [8] and DroneDeploy [9]. FlytBase
offers drone management and automation features like no-fly zone visualization, planned flight
paths, and scheduled missions. It integrates with docking stations for autonomous recharging and
tracking, making it ideal for reconnaissance and mapping. Strengths include autonomy and
visualization, but it lacks manual override options and has issues like low video resolution and slow
customer support. DroneDeploy is an app for capturing site data manually or autonomously,
supporting mapping, modeling, marketing, and inspections. It streamlines tasks like LAANC
airspace authorization and uploading up to 10,000 images at once. While praised for ease of use and
reporting compliance with surveying standards, it has drawbacks like high costs, slow processing,
and the inability to add custom no-fly zones to flight paths.

4.1.3 Technical Complexity

Subsystems:

1. Partitioning Algorithm Implementation:
- Principle: Computational geometry and graph theory.
- Complexity: Handling irregular convex shapes of no-fly zones and ensuring

optimal partitions.
2. Drone Response Simulation:

- Principle: Planning flight paths.
- Complexity: Simulating flight paths that respect partition boundaries and no-fly

zones.
3. UI/Visualization:

- Principle: Interactive graphics and geospatial data visualization.
- Complexity: Rendering real-time feedback from backend solutions.

4. Backend Integration:
- Principle: Database management with PostgreSQL/PostGIS.
- Complexity: Efficiently handling geospatial queries and serving data to the

frontend.

19

Challenging Requirements:

- Real-time response simulations for user-selected locations.
- Balancing computational efficiency with accuracy in obstacle-aware partitioning.
- Ensuring the system operates reliably under variable drone fleet sizes and geo-area

complexities.

By addressing these aspects, the project meets and exceeds industry standards in obstacle-aware
drone deployment systems.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

In terms of the backend there were 2 key decisions that were made. The first being what framework
to utilize, and the other being how we wanted to store and transfer our data to the frontend.

With the backend running on Django, there were several advantages that were seen when compared
to other python frameworks. Firstly, the Django shell is incredibly easy to utilize and work with. The
shell allows you to run the server, modify configuration options, make modifications and talk to the
connected database, and even run tests in an easy way. Compared to other shells, this seemed to
make the most sense, as we would want to be able to check adjustments we made quickly and
efficiently. As well as this, there are many outside libraries set up for Django to utilize already that
work very efficiently. Many other frameworks have you build out certain aspects of the application
on your own, which would lead to the project taking more time and put it at risk of incompletion.
On top of that, Django is incredibly easy to dockerize, which is something the project required if it
was to be used on multiple platforms. Docker luckily has an easy containerization method for
django projects that can be written into Dockerfiles and compose.yml files. It allows you to bring in
other containers that would need to be used, such as a database container, and communicate
efficiently between them.

Since Django was chosen to host the backend and the project would require the use of APIs to
deliver large amounts of data, the project needed to utilize a database that could be easily
configured to run with Django and put its data into API calls. The clear choice for this was
Postgresql. This was due to the fact that it has built-in adaptability for GIS data which we needed to
store from geojson files. Many other databases have additional packages they require in order to
store this data, but Postgresql comes with it natively installed. As well as this, fetching data from
the database, and storing data is incredibly efficient and easy to utilize in Django. In Django when
you create objects that need to be stored and sorted through, you create direct associations within
the object classes themselves that relate directly to the database and other objects. These
associations can be called with almost no time complexity allowing for very quick use when data is
fetched from the APIs.

For the frontend there were also 2 key decisions made that allowed for the most efficient
development.

For the frontend we decided to leverage Vite and more specifically the TypeScript flavor of Vite. This
was because TypeScript offers advantages in terms of code maintainability, scalability, and error
detection, making it suitable for large and complex projects. However, it also adds complexity and

20

requires a compilation step. For our relatively simple frontend, the benefits of utilizing TypeScript
would far outweigh the added complexity. This along with VIte hosting the server ment me we
could quickly hot refresh the page without waiting for a compile, and allowed us to quickly
prototype ideas and functions in the frontend. We also implemented a structured frontend setup
mainly split into four directories, Assets for images and other media formats, Components for
functions and classes that we repeatedly use across pages, Pages which contained the routes and
functions that are page specific and finally Test where we leveraged PlayWright to do UI testing.

For the frontend framework, we decided to use React. React offered us the flexibility to design a
modular and scalable frontend where components could easily be reused across multiple pages.
Since our application had shared elements like the map viewer, no-fly zone selection, and event
lists, React’s component-based architecture allowed us to quickly build, organize, and update these
features without having to rewrite code. Another major reason we chose React was the built-in
ability to refresh only parts of the page rather than doing a full page reload. This made our app feel
faster and more responsive, which was important for maintaining a smooth user experience when
interacting with live maps and updating drone events. By using React along with Vite, we were able
to rapidly prototype ideas, integrate backend calls, and efficiently manage frontend state across
different parts of the application. These design decisions allowed us to create an intuitive and
inviting user interface while keeping the frontend code maintainable and easy for future groups to
extend.

4.2.2 Ideation

For at least one design decision, describe how you ideated or identified potential options (e.g., lotus
blossom technique). Describe at least five options that you considered.

For our frontend design, there were several parameters that we considered that can be seen below:

● Response time - minimize communication time between the front and the backend
○ Framework has capability to use fast sockets
○ Framework has the ability to use multiple types of data transfer

● Ease of use - minimize time taken to develop other components that could just be easily
implemented and reused later in the development

○ Pop-ups
○ Display Boxes
○ API displays

● Quality of design - we want the users to be able to see what is going on and understand
the front facing UI that they can interact with

○ Easy to notice text boxes
○ Easy to use buttons
○ Easy to use mapping

● Data transfer capabilities - the design should be able to take in multiple data types that
the user gives in and be able to push it correctly to the backend

○ Take in polygons via data sets
○ Take in polygons via plotting on the map
○ Take in numerical data
○ Be able to make this easily into JSON

● Backend compatibility - some frontend frameworks only work well with certain
languages and backend frameworks

○ Works with many different languages and different frameworks
○ Easily communicate between them

21

4.2.3 Decision-Making and Trade-Off

When we decide on a frontend framework, our main criterion will be how easily data can be
transferred and how well it interacts with our chosen backend and the languages used. We must
consider how this data can be visualized to the front-facing user, as well as how well it can be
transferred into the backend and be changed for the user to use easily and efficiently. Currently we
have not chosen an option, but are leaning towards React+Vite as this has great ease in almost all of
the areas described in 4.2.2.

4.3 FINAL DESIGN

4.3.1 Overview

The final design for this project has two main components, each with their own subcomponents.
Those being the frontend and the backend hosting a web application. The frontend is there to allow
the user to experiment and use the drone partitioning model, as well as allowing them to pull and
see data they may want to test on their own. The backend is there to allow for data manipulation,
storage, and other calculations to occur in the background that the user does not need to see. At a
high level the backend is written fully in python with Django as the driving framework. Within this
there are several subcomponents that are incorporated into Django. The project uses a Postgresql
container for database access and storage, a Redis container for safe and secure key communication,
a websocket that outputs information about what is happening in the API calls, as well as the API
itself which the frontend directly calls upon. The entire backend is Dockerized for ease of use to
ensure that the backend host does not have to install all the dependencies, and set up the other
containers on their own

The frontend of this project serves as the primary interface for users to interact with the drone
partitioning system. It allows users to configure simulation parameters, visualize partitioned
geographic zones, and observe real-time drone activity and response times. Built with React and
TypeScript, the frontend is modular, maintainable, and optimized for a responsive user experience.
Mapbox is used to render a dynamic map interface, enabling intuitive visualization of areas, no-fly
zones, and drone paths. This is shown in figure 2 below. Users can also upload datasets, trigger
model executions (seen in figures 3, 4, and 5 below), and view system outputs in real time via a
WebSocket connection to the backend. API communication is handled through RESTful endpoints,
ensuring seamless integration with backend processes. While the frontend is not Dockerized for
local development, it is packaged into a Docker container during the CI/CD pipeline to ensure
consistent and reproducible deployment across environments.

22

Figure 2: Frontend Design (Discover View)

Figure 3: Frontend Design (Plan View)

23

Figure 4: Frontend Design (Create Targets View)

Figure 5: Frontend Design (Operation View)

24

4.3.2 Detailed Design and Visual(s)

This project is a web application enabling users to input parameters such as area boundaries, no-fly
zones, and event locations to observe an automated fleet of drones responding to events within a
designated environment. Upon receiving user inputs, the application divides the area into smaller,
partitioned regions, each assigned to a specific drone, to minimize response times to any critical
event. The application comprises several interconnected components: the User Interface (UI), the
Backend Server, a Database, an External Pathfinding API, a Partitioning Algorithm, and a Real-Time
Data Processor. Each component has a distinct role in the system architecture.

The UI is the primary point of interaction, allowing users to enter relevant data, control simulation
settings, and visualize real-time drone movement. It is built with technologies like HTML, CSS, and
JavaScript, leveraging frameworks like React and Vue for dynamic rendering. The UI displays
partitioned areas, event points, and drone positions in real time, providing users with a clear and
interactive experience. Figures 2, 3, and 4 respectively illustrate the homepage, input selection, and
map view. These mockups of our design were created to help design the frontend or UI of our
application. Figures 2, 3, 4, and 5 illustrate the final product of the frontend with homepage, input
selection, and map view with relevant target, no-fly zone, and partition information. When a user
initially loads our application, they will be directed to our application’s homepage where they can
find information on the FAA and how to use the application. From the homepage, the user can go
to the Discover page, Manage page, Plan page, and About Us page. From the Discover page, a user
can view no-fly zones on a map. From the Manage page, users can access tools to organize their
saved configurations and datasets, streamlining the process of running repeated simulations or
modifying prior inputs. The Plan page is where users define the core parameters of their drone
operation—selecting the number of drones, adjusting zoom levels, choosing a partitioning
algorithm, and identifying no-fly zones within a specified area. Once these settings are confirmed,
users can proceed to the Operate page, where the system dynamically renders partitioned zones
and displays real-time drone movement in response to simulated events. A final page, Create
Targets, allows users to define specific event points for drones to respond to, which adds another
layer of interactivity and testability to the simulation environment.

The overall UI design emphasizes clarity, accessibility, and intuitive navigation. Early mockups
created in Figma guided the structure and layout of the interface, enabling the team to refine visual
flow and user experience before implementation. Consistent styling, embedded instructions, and
accessible color choices help ensure that users can understand and interact with the application
effectively, even without external documentation. Each page in the UI serves a specific role in a
cohesive workflow that walks the user from introduction to simulation completion. The frontend
structure is designed to be modular, with reusable components that not only accelerate
development but also ensure visual and functional consistency across the application. The map
view, powered by Mapbox, is central to the user experience, allowing interactive exploration of
geographic zones, real-time visualization of drone paths, and intuitive updates based on backend
simulation outputs. The result is a frontend that is both user-friendly and capable of supporting
complex geospatial operations in a visually engaging manner.

The Backend Server, developed using Python (with Django as the driving framework) and
PostgreSQL, handles data processing and storage. It receives data from the UI, manages user
sessions, and controls algorithm execution. Every API call in the backend requires postgresql in
order to make its calls, as the maps, associated no fly zones, associated partitions, and associated
drones are all linked together. Without them being stored somewhere, the frontend would have to
maintain a state that would be way too large to be able to manage on its own. Each call, when
executed, starts out by either creating a new map specific to the user, or calls back on the id of the
map that the user has already created. From here, depending on which call is used, no fly zones,

25

partitions, and drones are either generated or recalled for the user to see. This is easily done by how
Django allows for associated classes to be filtered by one another’s ids. This is the reason why at the
beginning of each call map ids are created or utilized to filter for the data the user requires. There is
also an API call, pathfinding algorithm that routes drones around no fly zones to respond to specific
events. Rather than use a traditional pathfinding algorithm with graphs, this project responded
better to another developed algorithm. It starts by having the user place an event within a partition.
From here the algorithm finds which partition the event is in, and the drone located within this
partition. After this, a straight line is drawn to the event, and the drone moves along that line until
it bumps into a no fly zone. The algorithm then computes two potential paths around the no fly
zone (under the assumption that they cannot touch and that no fly zones are convex) which has the
drone follow the vertices of the no fly zone until a straight line to the event can be drawn again.
Between the two paths, the shorter flown of the two is used, and the corresponding points flown
through are added to the existing path. This process repeats until the drone arrives at the event.
Everything from these API calls is returned to the frontend, as a json structure that is easily parsable
and described preemptively in the README.md.

The Partitioning Algorithm, implemented in Python, divides the area into distinct regions based on
the number of drones (only able to do 2 to the power of inputted drones due to algorithm
restrictions) and user-defined no-fly zones. This algorithm utilizes computational geometry
libraries to create efficient, non-overlapping regions, with minimal computation time to support
real-time requirements. Once regions are determined, the Real-Time Data Processor continuously
updates drone positions and routes as events are introduced or modified. The processor employs
WebSocket technology to push updates to the UI, enabling seamless visualization of drone
responses.

These components work together to ensure an efficient, responsive system that meets real-time
visualization standards. In the final architecture as shown in Figure 5, the UI communicates with
the Backend Server, which connects to the Database, Partitioning Algorithm, and Pathfinding API.
The Real-Time Data Processor bridges the backend and frontend, maintaining continuous updates
and event-driven responses, delivering a smooth, real-time experience for users observing
automated drone fleet operations. This high-level overview and subsystem descriptions allow peer
engineers to understand the project’s architecture and replication requirements clearly.

26

4.3.3 Functionality

When a user interacts with the application through the frontend, their inputs—such as selected
drone counts, geographic parameters, and no-fly zones—are sent to the backend via RESTful API
calls. The backend, built with Django, processes these inputs, performs the necessary partitioning
and simulation calculations, and returns structured data formatted for frontend rendering. This
data includes GeoJSON representations of partitioned zones, target points, and drone positions,
which the frontend then uses to dynamically update the interactive map view. Websocket
connections support real-time updates during drone simulations, ensuring the user can observe
changes live as they occur. This seamless flow between user input, backend processing, and
frontend visualization allows for a smooth and interactive simulation experience.

4.3.4 Areas of Challenge

The main challenges facing the frontend were integrating the Mapbox API with our application to
display the no-fly zones, the partitions, and the drones moving from point A to point B or the
location of an event. When tasked with creating a user interface to allow users to view the map,
drones, or partitions, MapBox API was an obvious choice as it allows developers to overlay objects
on a map with longitude and latitude coordinates which would make our user interface as accurate
as the list of coordinates we are supplied through drone location, partition alignment, or a list of
no-fly zones. In the process of displaying no-fly zones, we ran into issues where the frontend would
crash when loading the display of the no-fly zones over the map. In order to face this challenge, we
started from square-one and read the MapBox API documentation to see if there were examples or
instructions on how to overlay objects and shapes over the map. Through this process we found
examples and were able to display the no-fly zones over the map by updating the examples from the
documentation to be used with our list of no-fly zones from the backend API.

Another challenge facing the frontend was integrating the backend API calls with the frontend in
the web application. While integrating the backend API with the frontend, we first needed to

27

understand how to access the API calls from the backend and how the API calls were formatted so
that we could easily display the information in the frontend. We utilized Postman to check that the
API calls were accessible and to verify how the data was formatted before beginning integrating the
APIs in the frontend. After initially setting up the API calls in the frontend, we had issues with
receiving the data in the GET requests. After further consideration and testing, we decided to
format the requests as POST requests from the backend to set up the no-fly zones in the user
interface and in the backend database.

As for the backend, there were several challenges that were faced and overcame throughout the
development process. The first, and arguably most predominant challenge was the incorporation of
the partitioning and convex no fly zone generation code given by the grad student. When the team
was first given the code there was a very minimal amount of documentation provided with it, with
the exception of the python commands utilized to execute it on the command line. However, this
project needed it to be incorporated without use of the command line, and rather through use of
direct calls. Diving into the file that was executed through the command line, was very confusing
and initially led to more questions than answers. It was difficult to understand how the data
structures were formatted, what was being asked for in the calls, and what certain symbols event
meant when they were passed through different functions. It took parsing through each file
carefully, and adding many print statements throughout the functions to be able to understand
what was being passed through. At times there were different json formats, csv files, and objects
from a different python library that was unfamiliar at the time. After understanding this, the
backend team was able to implement this through trial and error of different class formations, and
eventually was able to get out the results it needed from the algorithm.

Another issue that the backend faced, was incorporating the websocket to be used to display real
time data from the API calls as they were being executed. This needed to be done so the user was
understanding what was happening during calls at a high level. The main issue here was that
Django doesn’t natively have any websocket support. Upon realizing this, the team looked into
solutions that would work for what was needed. There were a couple of options that seemed viable,
but the one that looked to work the best out of them all was pulling in and using both the channels
and daphne libraries. These work really well in tandem with one another, by allowing for channel
communication, in a safe and secure manner. This allows for an API call to be able to spit out
information directly to another site which dumps this information as raw text, only for this user to
be able to retrieve. However, it was not clear in the guide followed that there would need to be
another item incorporated into this. That being a Redis container for safe and secure key storage.
When the team continually attempted to get this working before knowing this, the errors were very
cryptic and seemed to change every time there was a change to the code. Eventually one of the team
members recalled something about safe key exchange from a security class they took, and inferred
that incorporating a Redis container would be able to allow for this to work. Evidently enough, it
was exactly what was needed to get the socket working perfectly. This is why the compose.yml in
the backend has a Redis container built in, so that the backend host does not have to go out of their
way to fix this issue.

4.4 Technology Considerations

Our project uses a mix of frontend, backend, database, and computational technologies to build a
robust, real-time drone visualization system. Here’s an overview of each technology choice, along
with strengths, weaknesses, and trade-offs made to balance performance, scalability, and security.

1. Frontend: JavaScript with React (or Vue)

28

Technology Choice: We selected JavaScript, specifically frameworks like React or Vue, to build an
interactive frontend that can handle complex, real-time data visualizations.

- Strengths: React and Vue are well-suited for real-time interactivity and state management,
allowing us to update the UI as drone positions and events change efficiently. Both
frameworks are widely used, well-documented, and supported by large communities, which
helps troubleshoot and maintain code quality.

- Weaknesses: As with any frontend framework, the responsiveness may degrade if there are
too many simultaneous updates or if the dataset grows large, potentially leading to slow
rendering.

- Trade-offs: We chose JavaScript frameworks for their speed in development and
interactivity. However, with increased data loads, we may face trade-offs in UI
responsiveness.

- Design Alternatives: Alternatives like Angular could provide stronger structure and
scalability but have a steeper learning curve. Another option could be WebGL for more
efficient handling of complex animations, but it requires more specialized knowledge and
would increase development time.

2. Backend: Python with FastAPI (or Django)

Technology Choice: Python, paired with FastAPI or Django, was chosen for its simplicity, extensive
library support, and compatibility with computational tasks like partitioning and pathfinding.

- Strengths: Python’s readability and extensive library ecosystem (NumPy, SciPy) support
complex calculations required for partitioning algorithms and data processing. FastAPI
offers high performance with async capabilities, critical for handling concurrent user
sessions and requests, while Django provides more built-in features and a robust structure
for larger applications.

- Weaknesses: Python could be faster in execution speed than languages like Go or C++.
This could lead to delays in real-time operations, especially with larger datasets.

- Trade-offs: While Python may not be the fastest choice, its ease of use and large
community support outweigh the need for optimizing real-time processing through faster
languages.

- Design Alternatives: Node.js could be used for backend development with the advantage
of a single language for both frontend and backend. However, it lacks Python’s
computational power, essential for our project’s algorithmic needs.

 3. Database: PostgreSQL

Technology Choice: We opted for PostgreSQL as the primary database for session data and user
inputs.

- Strengths: PostgreSQL is reliable, ACID-compliant, and supports complex queries and
indexing, making it ideal for managing and storing structured data securely. Its support for
JSON is also helpful for handling flexible data types.

- Weaknesses: PostgreSQL may not handle high write operations or extremely large datasets
as efficiently as NoSQL databases, which could become an issue if we scale to larger drone
fleets and more extensive input data.

- Trade-offs: We selected PostgreSQL for its balance of robustness, relational data
capabilities, and moderate scalability. Although it may not handle high-speed data
ingestion and some NoSQL options, it provides the security and structure we need.

- Design Alternatives: A NoSQL database like MongoDB could allow for faster scaling and
unstructured data storage, but it sacrifices the relational structure required for user

29

sessions and partitioned areas. Redis or a time-series database could be introduced for
high-speed data processing for high-traffic situations.

4. Partitioning Algorithm and Computational Libraries: Python with NumPy and SciPy

Technology Choice: We are using computational libraries in Python, including NumPy and SciPy,
for partitioning regions and processing data to calculate efficient drone paths.

- Strengths: These libraries are optimized for numerical computations and offer powerful
tools for mathematical operations, making them suitable for partitioning and pathfinding
tasks.

- Weaknesses: While suitable for smaller datasets, Python’s single-threaded nature and
interpreted code may lead to slower computation times for extensive datasets, which could
challenge real-time visualization requirements.

- Trade-offs: Python’s library support and ease of use for computational tasks make it a
strong candidate despite potential performance issues. We rely on efficient partitioning
algorithms to mitigate this, optimizing code to keep processing times within real-time
constraints.

- Design Alternatives: Implementing computational tasks in C++ or using specialized
libraries like Boost or OpenCV could reduce processing time but would increase
development complexity and may limit flexibility in algorithm testing and adjustments.

5. Real-Time Processing: WebSocket

Technology Choice: WebSocket manages real-time data transfer between the back and frontend,
enabling continuous updates as drones move and respond to events.

- Strengths: WebSocket provides full-duplex communication, allowing for persistent
connections essential for real-time applications. This ensures the application responds
immediately to event updates and drone movements.

- Weaknesses: WebSocket connections can be resource-intensive, particularly under high
loads. If many users are connected simultaneously, server strain could increase significantly.

- Trade-offs: WebSocket ensures low-latency updates, but robust server infrastructure is
required to handle potential high loads.

- Design Alternatives: Alternatives like Server-Sent Events (SSE) could be simpler to
implement for lightweight data streaming. However, they are not bi-directional and may
not be as responsive for real-time interaction. Alternatively, using REST for periodic
updates would simplify server load but lack the responsiveness needed for real-time
visualization.

6. External Partitioning API

Technology Choice: We rely on an external partitioning API to calculate optimized flight paths that
avoid no-fly zones and minimize response times.

- Strengths: The API reduces our internal workload for pathfinding and provides specialized
algorithms optimized for handling geographic constraints.

- Weaknesses: Dependence on an external API could lead to latency, especially if the API
needs to handle requests quickly enough for real-time application needs. It also introduces
potential security concerns with third-party data transmission.

30

- Trade-offs: The API offloads complex calculations, but reliance on a third-party service
risks response-time delays. We mitigate this by caching routes when possible.

- Design Alternatives: We could implement custom pathfinding algorithms internally to
reduce reliance on third-party services. However, this would increase development
complexity, and implementing high-performance algorithms may require additional
expertise.

By balancing the strengths and limitations of each technology, we aim to create a scalable, secure,
and responsive solution. Through agile development, we will test these components under varied
scenarios to ensure they meet project requirements and deliver an optimized experience.

4.5 DESIGN ANALYSIS
As of right now, we have implemented and built a good portion of the frontend. We cannot make
the backend at this time due to the fact that the PhD student making the pathfinding algorithms is
not complete with his work, so we cannot process the data that users can give. It looks to be
working great so far however, the user has a great way to input data as of right now, and should be
easily parsable to be sent to the backend when we get to that point. For future implementation we
want to develop the backend and get that data to be processed so our users can see how the drones
should be flying within their respective partitions.

31

5 Testing
In this section we will discuss the testing methodology that will be applied for the development of
this project. There will be tests for both the functional and non-functional requirements, as
mentioned previously in section 1. This will be done to verify that the functional requirements are
working as expected, and that the non-functional requirements are meeting the needs of our
clients/advisor. Luckily with our product there are no cost related requirements as we are just
developing a visualization system. When the components of our project are implemented, we will
run them through unit, interface, integration, system, and regression tests. After these tests are
completed we will discuss the results with our advisor to find areas of improvement for further
development. Each of the subsections below will outline each of the particular tests to be
performed throughout our development cycles.

5.1 UNIT TESTING
Unit testing will consist of testing the individual units that make up the project. When we refer to
testing units, we are referring to the GUI components, classes, and methods that we develop for this
project.

In the backend, there have been many things tested individually as units. Firstly, all of the models
(database structures/classes) have their own tests. These tests check modifiability of variables
within, the uploading to the database, the retrieval from the database, instantiation, and deletion of
the models. Alongside this, each API call is tested on its own and compared to expected results.
Each call has a test case that should pass, and a test case for each possible way an API call should
respond if something not expected happens. For the test cases that pass, those include data that can
be uploaded and integrated into the database and has a set of data upon end of execution that is
compared against to ensure that the data computed is accurate. For the cases that fail, unexpected
arguments are passed into the json format and from this inputted data, a corresponding response is
expected describing what happened during the attempted execution of the call.

In the frontend, since we are using React with Vite, we are able to use the Vitest framework in order
to test individual components to ensure they are doing their expected job before integrating them
to our overall project. We also use React Testing Library (RTL) to test different components or
services in the frontend. RTL is useful when testing component functionality and behavior rather
than just test implementation. For example, we can simulate user interaction with buttons or forms
and confirm that the appropriate side effects or UI changes occur as expected. This allows us to
write tests that mirror actual user behavior, helping to catch potential issues early in development.
Testing focuses on making sure that the pages render correctly with different sets of props or state,
and that components such as the map, form fields, or buttons respond appropriately when
interacted with. By validating individual functionality, we can be confident that once components
are integrated together, they will work reliably as part of the broader UI.

5.2 INTERFACE TESTING
The interface testing will be tested through the combination of multiple units. These combinations
will ensure that the interface of the application will be able to be successfully implemented. Our
general interfaces are:

1. The grad students algorithm (GSA)
2. Pathfinding of the drones
3. Our UI to display everything
4. The MapBox API

32

Two of the large interfaces within the design were the pathfinding of the drones and the MapBox
API.

For the pathfinding, there were many different bits and pieces that were combined and used for the
drones to move. These involved the shapely library (with shapely points, and objects), objects from
the project’s own database, and the math library. When combining all of this into one aspect of the
design, the computations from the different libraries were completed within other functions. This
ensured that we were able to test those portions directly and get back the expected results that
could then be used for the remainder of the pathfinding algorithm. For example, in the shapely
library when declaring points, the programmer is not allowed to redefine those points unless it is
completely reinstated. When originally coded, it was assumed you could and without testing that
we would not have realized to change the code and modify it to simply reinstate the point.
Separating it out like this also allowed us to determine where problems were occurring and how to
fix them.

As for the MapBox API incorporation, we first had to use the map given from the API itself. From
there we had to plot points as well as shapes, some of which moved across the map. Doing all this
while calling in backend API data was quite the hassle. So breaking it down into smaller parts and
testing that results from the MapBox API were coming in as anticipated allowed for us to
understand how to call the MapBox API and when to call it. The tool that we used for this was
SmartBear. This allowed us to input sample data, and get a good view at what came back from the
MapBox calls individually. It gave a fantastic breakdown of what was retrieved from the MapBox
API, so we could better integrate those functions into this project.

5.3 INTEGRATION TESTING
Integration testing was completed by breaking the system into several different major
functionalities and then testing each functionality separately from each other. This ensures that all
of these functionalities are performing as anticipated and will be able to send the correct data
between one another.

The critical paths were tracing through certain functions in the backend to ensure that data is being
calculated correctly, ensuring that the data we receive through API operations is what is as
anticipated, and ensuring that data being sent to the frontend is being used correctly and displaying
what is needed for the user. To accomplish this aspect of our testing we broke down the system into
logical, high-level functionalities that into backend data processing, API endpoints, dataflow from
the database, and frontend components. We then wrote individual tests that honed in on each
category of functionality.

One example of this in the backend was creating a map, generating convex no fly zone regions for
it, partitioning the region accordingly, placing drones into that map, and finally routing them
around their given partition. This is arguably the most important of the critical paths, as within this
path, each piece of data needs to be aware of others. So ensuring that the correct data was being
used for generation and placing the drone was key. Without this, drones could have been placed
within no fly zones, or outside of the map itself. Partitions could have been generated incorrectly if
the wrong no fly zones were utilized.

For the frontend, Playwright was utilized to test all functional components on a page. This included
simulating full user interactions across multiple components, such as navigating from the
homepage to the Plan page, entering input data, and confirming that the data correctly triggers

33

state changes, API requests, and map updates. These integration tests ensured that when the user
configures a drone operation, the correct flow of data occurs.

5.4 SYSTEM TESTING
System testing was completed by running multiple integration tests together to verify that
throughout an application run, we are seeing expected results at each step and that data is being
properly displayed to the user. This was vital to the system, ensuring that if the user selects a
location, this will go through the API and the response will go back to the UI and into the backend
to compute data which will be computed and rerouted back to the UI. In order to perfect this, we
chained together the corresponding integration, interface, and unit tests. The critical requirements
will be verified by utilizing all of these system tests.

The main example of this was testing that each function within API calls was returning the proper
values to be used later on. From there, the interfaces we used to communicate data were tested
properly to ensure clear communication between the backend and frontend. Then ensuring that
everything was integrated properly allowed for the correct data to be computed and utilized in the
project.

5.5 REGRESSION TESTING
Regression testing was done by running all the previously existing unit, interface, and system tests
to ensure that nothing has changed from our previously expected results. On top of this we
manually verified the system functionality in order to determine that every part of the system is still
functional for our users. Critical requirements were also to be checked to ensure that there are no
changes from the new implementations. This includes: UI display, path generation for the drones,
partitioning algorithms, as well as API communications. To accomplish regression testing, we used
postman to make API calls to the backend server. Test get calls to our geojson data was crucial
because it not only confirmed the correct functionality of our parser, but also confirmed that our
backend could handle the mass amount of data in our datasets.

There were several implemented features that we needed to ensure didn’t break. Those included,
map and data generation, pathfinding of the drones, display of data to the user, and visibility of
aspects on the UI. Whenever something new was included, these were the first items to check, as
they are the main functionality of this project. This was heavily driven by the requirements, as they
specified that these items be what work for the user.

5.6 ACCEPTANCE TESTING
Acceptance testing was done by analyzing both the functional and non-functional requirements
that were created and having ensured they were not being violated. For the functional requirements
we create a set of use cases for functions within the application. These use cases cover all possible
scenarios that a user could do when utilizing the application, and are followed as test routes within
to ensure anticipated performance. As for the non-functional testing, we mostly demonstrated the
application to our advisor to ensure that the project requirements were being met. For each major
development within the project we also demonstrated it to our advisor and listened for feedback to
improve upon, come the following meeting. Once our advisor had acknowledged that the
application is meeting the requirements, we were satisfied with the current development.

34

5.7 USER TESTING
To test if our design addressed potential user’s needs, each team member went and had 4 different
people use the application and get their feedback on what they liked and disliked about the project.
When we did this, we first let them look at the website and let them attempt to figure out how to
use it. This was done to see if it was easily understood how to navigate and use the application.
After this was done, we stepped in (if need be) and showed how to use the application and its
intended purpose if that was not made clear to them. In the majority of interactions with the site,
our test users thought the site was easily accessible and easy to navigate through. The only thing
they didn’t like as much at times, was that the site was somewhat slow when doing partition
generation. Sadly, this was outside of our scope, as this is what the grad student was working on. To
attempt to fix this problem, this code was delved into and several unnecessary things were removed
in order to help response time. This did reduce the time taken on those calls by up to 40 seconds
depending on the information provided to the grad student’s code.

5.8 RESULTS
The results of all of these different types of tests came back very positively.

Each unit test was successful in its execution, regardless of whether it was intended to validate user
input or simply execute as intended.

In terms of interface testing, it was rather difficult at first. Some of the documentation for the
different libraries and external APIs were difficult to understand, so writing tests for them to check
input was somewhat difficult in the beginning. However as time progressed, the group was better
able to understand what was expected of the API calls and library functions. Once this was
interpreted, tests were better written to validate what the project was anticipating.

In terms of integration testing, checking that the critical paths were operating as intended went
very well. Every time a different data set was used and uploaded to the database to be used, it
generated convex no fly zones properly, which then led to proper partition generation, which led to
correct drone placement. From here once this was all completed drones were able to be
manipulated and moved anywhere within their given partitions.

System testing was very successful after we had run all the other kinds of tests. Running the unit
tests of the functions within the API calls, then running the interface tests of the generations and
pathfinding, and finally running the integration test of all of these working cohesively,
demonstrated that the system worked perfectly together. Assuming that the frontend passed in the
same json that the tests would, the system works flawlessly and allows for the user to get their
information as fast as possible.

Regression testing never seemed to have any problems anytime new code was added to the
application. The only time it would have some issues was when certain larger functionalities within
API calls were reduced to other functions for readability. Sometimes a line of code was not copied
over correctly, or something was forgotten to be passed in. So running these was very helpful when
the project was being compartmentalized in a more efficient manner.

Acceptance testing was received very well, as the team attempted to emulate what actual users
would attempt to do on the website. All of the main functionalities worked flawlessly, with error
messages telling the users what to do and how to run the site. The team also attempted to break the
site and attempt to get API calls to run when they were not supposed to. However, any attempt at
this did not allow any unauthorized access which is very successful.

User testing was successful as well. All of the test users had good things to say about the site, and
how well it functioned together. The only complaint was the response time of some of the button

35

presses (API calls), but this is simply due to the time complexity of the grad student’s imported
algorithm.

36

6 Implementation
The implementation on the frontend consists of a React application built using Vite for fast
development and optimized builds. The frontend uses the MapBox API to render interactive maps
with custom no-fly zones, drone positions, and event markers. React allowed us to modularize our
codebase, making it easier to reuse components like the map viewer, forms for input, and event
trackers across multiple pages. Once the user inputs the necessary information (such as the
surveillance area, no-fly zones, and number of drones), the frontend communicates with the
backend to create a new map instance. Afterward, users can view the partitioned map with drones
assigned to specific regions, watch drones respond to event requests, or generate their own list of
events for drones to handle. Users also have the option to browse previously created instances,
either for reference or for immediate use without needing to configure a new one.

The implementation on the backend consists of the host application run on Django, a PostgreSQL
instance to host the database, and a REDIS container to ensure secure key transfer in the
communication. Django is completely written in python with outreach ability to the database for
swift and easy communication between them. To get a full run of the backend application, the
frontend will need to first call for a map to be created with convex no fly zones. From here they will
have it partitioned into separate regions, each with their own drone to navigate to events. Once
those are created the frontend will have the ability to send back event requests to have drones
navigate to within their given regions. The frontend also has the ability to pull up previously
generated maps to give the user an example of what they should make their map look like, or just
use one of those.

6.1 DESIGN ANALYSIS

When drafting the application, our primary goal was to create a user interface that felt intuitive,
inviting, and slightly modern. Using Figma to design initial mockups helped us visualize the overall
flow and aesthetic early on. Based on these designs, we chose React (with Vite) and the MapBox API
to implement the frontend. React allowed us to easily modularize the UI into reusable components,
such as the map component displaying no-fly zones and drone activity. This modularity not only
sped up development but ensured a consistent and smooth user experience across different pages,
aligning well with the requirements of our initial problem statement.

The user interface emphasizes simplicity and clarity. Instructions are integrated throughout the app
to guide users on how to interact with each page. We used contrasting colors to enhance readability,
ensuring that text and critical information remain accessible even at a glance. Once users input the
necessary data (e.g., surveillance area, no-fly zones, number of drones, partition algorithm), they
are taken to a dynamically partitioned map where they can observe simulated drone responses. This
visualization helps users manage and monitor drone operations easily.

Breakdown of Application Pages:

- Homepage: Introduces users to the app and provides basic instructions on usage.
- Discover Page: Displays a list of generated no-fly zones for users to explore.
- Plan Page: Allows users to configure a drone operation by selecting the number of drones,

no-fly zones, map coordinates, and zoom level.
- Operate Page: Shows the user's configured operation, including map partitioning, no-fly

zones, and active drone simulations.

37

- Create Targets Page: Enables users to create and manage event targets for drones to
respond to within their configured instance.

Client-Side Interaction (UI)
The client-side interaction is designed around minimizing user confusion while offering dynamic
and engaging feedback. React’s component-based structure supports fast loading times and
responsive updates when users interact with map elements, form fields, or drone events. MapBox
enabled detailed, customizable map visuals, making it easy to render no-fly zones and real-time
drone markers accurately.

Server-Side Implementation (Backend)
Our backend, built using Django and PostgreSQL, supports the frontend by managing
user-configured instances, no-fly zone datasets, and event creation. Django’s REST framework
allowed us to set up secure, well-documented API endpoints for communication between the
frontend and backend. PostgreSQL was chosen for its robustness, scalability, and potential to
handle complex geospatial queries in the future, especially if the application expands to support
real-time drone tracking data.

During development, the main challenge we encountered was ensuring that the API responses were
properly formatted for rendering in MapBox on the frontend. MapBox required specific
GeoJSON-like structures, and transforming our Django-generated data into that format required
careful backend adjustments and frontend parsing. Addressing this integration issue helped solidify
the data flow between server and client.

Evidence of Effectiveness
Evidence that the design works well includes successful internal testing, where users were able to
configure drone operations and observe drone events without needing instructions beyond those
provided in the app. Although we initially faced difficulties formatting backend responses to display
correctly on the map, resolving these issues led to a smoother overall user experience. Each major
feature — from setting up a mission to observing drone responses — flows logically and intuitively.
After overcoming integration hurdles, data is now displayed correctly and consistently, validating
our architectural choices.

Future Considerations
While the current implementation uses mock JSON files to simulate drone movements, the project
is structured so that future senior design groups can build on our work. The clean separation
between frontend display logic and backend event management means that real-world drone
tracking could be incorporated with minimal disruption. Additionally, expanding the backend's
geospatial capabilities in PostgreSQL (e.g., through PostGIS extensions) would allow for even more
sophisticated drone tracking and event management features in future iterations.

38

7 Ethics and Professional Responsibility
This discussion is with respect to the paper by J. McCormack and colleagues titled “Contextualizing
Professionalism in Capstone Projects Using the IDEALS Professional Responsibility Assessment”,
International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
We will be utilizing the SE code of ethics for this section of the document as shown in Table 5
below.

Area of Responsibility Definition NSPE Canon Differences between
NSPE and SE Code of
Ethics

Work Competence Perform work of high,
quality, integrity,
timelines, and
professional
competence.

Perform services only
in areas of their
competence. Avoid
deceptive acts.

SE code says
engineers need to
make sure products
are meeting the
highest professional
standards. NSPE does
not define that
engineers work only
within their
competences.

Financial
Responsibility

Deliver products and
services of realizable
value at reasonable
costs.

Act for each employer
or client as faithful
agents or trustees.

SE code says to act
with the client and
best public interest.
NSPE says to act as
the client or trustee.

Communication
Honesty

Reports work
truthfully, without
deception, and are
understandable to
stakeholders.

Issue public
statements only in an
object and truthful
manner. Avoid
deceptive acts.

SE code describes that
engineers should act
with integrity. The
NSPE says instead
that engineers should
only speak objective
truth.

Health, safety, and
well-being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the public.

SE code describes
engineers to act with
public interest.
Whereas NSPE
describes that
engineers should hold
the health and safety
of the public first and
foremost.

39

Property Ownership Respect property,
ideas, and
information of clients
and others.

Act for each employer
or client as faithful
agents or trustees.

SE code describes the
use of public interest
with clients and
employees. NSPE says
just to act as the
client or trustee.

Sustainability Protect the
environment and
natural resources
locally and globally.

 SE code says to act in
the public's best
interest, whereas the
NSPE has nothing on
sustainability.

Social Responsibility Produce products and
services that benefit
society and
communities.

Conduct themselves
honorable,
responsibly, ethically,
and lawfully so as to
enhance the honor,
reputation, and
usefulness of the
profession.

SE code says
engineers should
advance society. NSPE
says to do this with
many with honor,
responsibility, ethics,
and to enhance the
profession.

Our team is doing very well in the communication honesty responsibility. All of us are very open
with the way we communicate with each other, and are very honest about the ideas that we all
come up with. There is no deception among us, and we are all able to work well together. Our
advisor is very aware of where we are at, and how we plan to go about achieving our goals for this
project.

We could likely improve the health, safety, and well-being responsibility. Currently we don’t really
see how we are all doing mentally, just to see how we are all doing on our work.

Our team is having weekly meetings where we discuss many of these responsibilities working
alongside the development of our project. This has been very beneficial to the advancement of our
goals and sprints.

40

7.2 FOUR PRINCIPLES

Table 6 illustrates the four principles of ethics as it relates to our project. Economic beneficence is
the most important broader context-principle pair within our project. This is due to the fact that we
will help many different groups of people save time and money with our design. The way we will do
this is by making our design as user friendly as possible. People will be able to see their potential
drone fleet setups responding to events that they would have.

We are currently lacking in public health, safety, and welfare nonmaleficence. This is because we
have not determined a way to prevent these drones from being used in a harmful manner. We may
try to improve in this area by having people put in specific drone models they want to use for their
fleets.

7.3 VIRTUES
1. Collaboration

a. This is the ability to work well with others. In terms of sharing ideas,
responsibilities, and resources to achieve common goals

b. We support this value by organizing team meetings, listening to one another, and
offering constructive feedback on design choices.

2. Respect
a. This is the ability to value skills, contributions, and perspectives of all team

members.

41

b. We support this virtue by fostering an environment where all opinions are
welcomed, allowing people to speak without interrupting, and resolving conflict in
swift and efficient manners

3. Accountability
a. This is the ability to take responsibility for your actions and decisions on the team.
b. We support this virtue by setting clear expectations, checking in regularly, and

focusing on solutions rather than blaming people for things that may end up
happening during development.

42

8 Conclusions

 8.1 SUMMARY OF PROGRESS
This project was completed in a very efficient manner, with lots of testing rigorously completed. We
are able to meet all of the user requirements, and everything that gets computed is done in a
manner as efficiently as possible. The team did very well in developing both the frontend and the
backend, and actually were able to reduce some of the complexity of the grad student’s provided
code as well. This allowed for the project to run at a quicker rate, especially when utilizing the
partitioning algorithms. As well as this the frontend was meticulously developed to be able to best
match what the user would like to see. From this time taken, the frontend looks very good and very
up to standards. Lots of work was put in to make this happen, which helps address the user's need
for ease of use.

 8.2 VALUE PROVIDED
The current design addresses the users’ needs very well, by allowing them to be able to easily
navigate the page, run their own no fly zone and partitioning generation, and pathfind drones
within their generated partitions, the users are able to get all of the needs from this project. It
addresses the problems we set out to address very well, as each piece of the puzzle is able to
communicate effectively, and retrieve any data needed at a moment's notice.

 8.3 NEXT STEPS
There are a few things that would be beneficial to add to this site to make it more interactive and
allow it to have more variety.

Firstly, allowing the user to select a number outside of a 2^power of drones would be a great idea.
This is possible, however for this project it was outside of the scope, and would have taken too
much time to add in outside. The way to do this would be to adapt the KD tree that is used for
partitioning, to break regions down slightly differently. When nodes have children they split a given
region directly by 2, so changing where these children are formed can allow for better usage of the
space given.

Secondly, allowing for actual drones to be connected to the application and be routed by the
application would be greatly beneficial. Once again this was outside of the scope of the project,
however this could be done by utilizing radio frequencies and having them speak directly with the
backend application. This would allow for more efficient drone movement as well, since the drones
could then call out to the frontend with their exact positions, rather than waiting for the API call to
return to the frontend.

Finally, having way more countries geojson files of their restricted fly spaces would also be useful.
Currently the project is limited to just having the US restricted air spaces, however adding in other
countries restricted airspaces could be beneficial to those that may want to use this project around
the world.

43

9 References

[1] Bobby Sudekum. “Don’t Fly Drones Here.” Medium, Mapbox, 21 July 2014,
blog.mapbox.com/dont-fly-drones-here-928dee4389e8. Accessed 4 Dec. 2024.

[2] G. Attenni, V. Arrigoni, N. Bartolini and G. Maselli, "Drone-Based Delivery Systems: A Survey
on Route Planning," in IEEE Access, vol. 11, pp. 123476-123504, 2023, doi:
10.1109/ACCESS.2023.3329195. keywords: {Drones;Surveys;Job shop
scheduling;Industries;Trajectory planning;Task analysis;Path planning;Product delivery;Urban
areas;Drone delivery;drone route planning},

[3] Saeed H. Alsamhi, Ou Ma, Mohammad Samar Ansari, and Faris A. Almalki. 2019. Survey on
collaborative smart drones and Internet of Things for improving smartness of smart cities. IEEE
Access 7 (2019), 128125–128152. https: //doi.org/10.1109/ACCESS.2019.2934998

[4] Ambuj Kumar and Bilal Muhammad. 2018. On how the Internet of Drones is going to
revolutionise the technology application and business paradigms. In Proceedings of the 2018 21st
International Symposium on Wireless Personal Multimedia Communications (WPMC’18).
405–410. https://doi.org/10.1109/WPMC.2018.8713052

[5] Jao Valente. 2014. Arial Coverage of Path Planning Applied to Mapping. Ph. D. dissertation.
Polytechnic University of Madrid.

[6] Ouri Wolfson, Prabin Giri, Sushil Jajodia, and Goce Trajcevski. 2021. Geographic-region
monitoring by drones in adversarial environments. In Proceedings of the 29th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL’21). ACM, New
York, NY, 480–483. https://doi.org/10.1145/3474717.3484216

[7] Z. Qin, A. Li, C. Dong, H. Dai, and Z. Xu. 2019. Completion time minimization for multi-UAV
information collection via trajectory planning. Sensors (Basel) 19, 18 (2019), 4032.

[8] “Enterprise Drone Autonomy Software Platform | FlytBase,” www.flytbase.com.
https://www.flytbase.com/

[9] “Drone & UAV Mapping Platform | DroneDeploy,” Dronedeploy.com, 2019.
https://www.dronedeploy.com/

44

https://doi.org/10.1145/3474717.3484216
https://www.flytbase.com/
https://www.dronedeploy.com/

10 Appendices
APPENDIX 1 - OPERATION MANUAL

Drone Control System Frontend: User Guide

The Drone Control System or SkyGrid is a React TypeScript application designed for planning and
operating drone missions. This guide will walk you through how to use the frontend to define no-fly
zones, plan drone operations, and simulate drone responses using various partition algorithms.

Getting Started

Before diving into the application, ensure you have the necessary prerequisites: Node.js (v16 or
higher), npm or yarn, a modern web browser with JavaScript enabled, and the backend server
running on http://127.0.0.1:8000. More information on how to start the backend can be found
below.

Figure 8: Frontend Operation (Application Setup)

After installing the dependencies with `npm install`, you'll need to create a `.env` file in the root
directory with your Mapbox token, which is a free open source map element for web pages. Once
set up, start the development server with `npm run dev` to access the application.

Planning Your Mission

When you first access the application, you'll begin on the Home page. This page gives a brief
overview of our mission in creating this application and also allows you to quickly start planning a
mission with the “Plan your Route” Button being predominantly displayed in the center. Before we
click this button however, if you're curious about just browning the FAAs No Fly Zone data in a
clean and easy format, on the left navigation bar you can click on the Discover option and then
click the No Fly Zone drop down menu in the upper right to view the data plotted onto the map.
Now we will move onto the Plan page by either clicking on the option in the navigation bar or the
button on the home page. This is where you set up your drone operations by selecting parameters
and configuring your mission environment.

45

http://127.0.0.1:8000

Figure 9: Frontend Operation (Plan View FAA Dataset)

Start by selecting the number of drones you want to deploy. The system uses 2^x drones, so
entering a value between 2-5 will determine your drone fleet size. Next, choose a no-fly zone option,
you can select from predefined FAA zones or generate custom zones.

If you opt for generated zones, you can customize additional parameters:

- Seed: For reproducible random generation

- Coverage: The percentage of area that will be covered by no-fly zones

- Size Variation: Controls how much the sizes of no-fly zones will vary

The generated data will only generate in the current view of the MapBox element, if you have more
specific restraints you can also manually type in the center located using latitude and longitude,
and the zoom level of the map. The interactive Mapbox map will display your selected no-fly zones,
giving you a visual representation of the restricted areas your drones must avoid.

46

Figure 10: Frontend Operation (Plan View Synthetic Dataset)

Once you're satisfied with your planning configuration, click "Continue to Operation" to proceed to
the next phase.

Operating Your Drones

The Operate page is where your planned configuration comes to life. Here, you'll run simulations
with the parameters you set in the planning phase.

47

Figure 11: Frontend Operation (Target File Upload View)

First, upload a Targets file in JSON format containing the coordinates of targets your drones need to
respond to. If you do not have one you can either click the “View Documentation” hyperlink or
navigate to the “Create Targets” option in the navigation bar.

Here in the Create Targets page you can click on the map to create your own custom targets or use a
default list of targets that have the drones fly around Ames, IA. Once you are done creating your
targets file press the green “Generate Target File” button and the Targets.json will automatically be
downloaded to your device.

48

Figure 12: Frontend Operation (Create Targets View)

 Next, select one of the three partition algorithms:

● Regular Decomposition
● Half Perimeter KD Decomposition
● Native KD Decomposition

After selecting your algorithm, click "Generate Partitions" to create the operational areas for each
drone. You'll see these partitions displayed on the map, showing which drone is responsible for
which area.

49

Figure 13: Frontend Operation (Operation Page Native KD Decomposition View)

Figure 14: Frontend Operation (Operation Page Half Perimiter KD Decomposition View)

50

Figure 15: Frontend Operation (Operation Page Regular Decomposition View)

Now you're ready to begin the simulation! Click "Start Simulation" to watch as your drones respond
to the targets from your uploaded file. The control panel will provide real-time status updates for
your drones and events.

Figure 16: Frontend Operation (Operation Page Simulation View)

51

Tracking Performance

During the simulation, you can monitor drone status and event history in the control panel. This
gives you valuable insights into how efficiently your drones are responding to events and navigating
around no-fly zones.

Figure 17: Frontend Operation (Operation Page Event Status View)

If you encounter any issues, such as drones not responding to events, check the API status in the
control panel. You may also try refreshing the zones in the Plan page if no-fly zones don't appear
correctly.

52

Figure 18: Frontend Operation (Operation Page API Status View)

With this Drone Control System, you have a powerful tool for planning and simulating drone
operations while respecting airspace regulations through no-fly zones. Whether you're conducting
research, planning real-world operations, or just exploring drone coordination strategies, this
application provides an intuitive interface for managing complex drone missions.

In terms of the backend running and initializing the system you will need to first write and place a
.env file in the proper locations. The first location to place this file will be under
backend->dronecontrol (this correlates directly with the Dockerfile), and the second location to
place this is under backend->dronecontrol->dronecontrol (this correlates directly to the settings.py
file, used to run the project). A format of the .env file should look similar to what is just below this
paragraph. The SECRET_KEY parameter is just a django key which can be generated easily at
https://djecrety.ir/ for your convenience. DJANGO_ALLOWED_HOSTS will need to be replaced
with the site url, ip address, or localhost if you are running it locally. These can be separated by
commas like so: localhost,127.0.0.1. The DB_NAME, DB_USER, DB_PASSWORD all will need to be
replaced with what you setup in your postgresql pgAdmin4 application. Otherwise it will be
automatically configured upon launch of the docker container.

SECRET_KEY=YOUR_KEY_HERE
DEBUG=TRUE
DJANGO_LOGLEVEL=info
DJANGO_ALLOWED_HOSTS=ANY_NEEDED_HOSTS
DB_ENGINE=postgresql_psycopg2
DB_NAME=YOUR_DB_NAME
DB_USER=YOUR_DB_USER_NAME
DB_PASSWORD=YOUR_DB_PASSWORD
DB_HOST=db
DB_PORT=5432

After these .env files are put in place, the user will need to actually launch the application. This can
be easily done in two manners, and is really up to the user’s preference as to how they want to run
it. The first option is directly from the command line. However before they do this, they will need to
install PostgreSQL from https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
so that the database can be connected. During the install you will need to install all parts, and

53

https://djecrety.ir/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

toggle PostGIS when you get to that part of the installation. If you are in the command line
navigate to backend->dronecontrol and type the following commands.

python -m venv venv
venv/scripts/activate
pip install -r requirements.txt
pip freeze
python mange.py migrate
docker run --rm -p 6379:6379 redis:7
python manage.py test
python manage.py runserver

The first command allows for you to set up a virtual environment for your python code to operate
in, and only needs to be done upon the first execution of the project. From here you are activating
the virtual environment, anytime you want to launch from here on out simply just do the venv
command. The next command installs the requirements needed for this project and only needs to
be done once. The following command just lists the installed libraries and versions, and is just used
to confirm you installed all the right dependencies from the requirements.txt file. After that the
migrate command is run to put all the data structures into the database and is required to be done
anytime the models.py file is modified (if you do edit that file, run python manage.py
makemigrations to first stage the migration). This next command should be done in a separate
terminal and is used to launch a redis container necessary to the project. Next this command will
allow tests to be run to confirm everything is working as intended, and should be run anytime new
tests are added. Finally the last command will execute and run the server to which the API can be
called out to.

If that option seems like too much work, the alternative is simply run the project through Docker. It
runs the exact same way, and is somewhat quicker depending on the speed of your computer. To do
this you need to go to https://docs.docker.com/desktop/setup/install/windows-install/ and install
Docker Desktop. The commands to do this are as follows.

docker compose up -build (ctrl+c once running)
docker compose run django-web python manage.py migrate
docker compose run django-web python manage.py test
docker compose up -build

The first command has you build the project first so that something actually exists and is pulled
into your Docker database. From here the next command will have you migrate changes that were
made prior in the database into your so that the data structures are set up the way they should be.
If changes are made to the database in the models.py file, you will need to run the same command
but with makemigrations instead of migrate and then the same command with migrate. The
following command allows for tests to be run in the container, and should be rerun anytime
changes are made to the test environment. Finally rerun the first command to get the application
up and running smoothly.

54

https://docs.docker.com/desktop/setup/install/windows-install/

Now that the backend and frontend applications are running smoothly, the API calls used between
the two should be discussed in order to clarify how and why things are happening. It should be
mentioned that all calls are POST calls as the frontend could only pass in json this way.

127.0.0.1:8000/dbrqs/generate_synthetic_noflies/

This call is used to generate a map with synthetic no fly zones to be visualized and partitioned later.
You will need to send a json in such as:

{
 "region_width": float_width,
 "region_height": float_height,
 "center_latitude": float_latitude,
 "center_longitude": float_longitude,
 "obstacle_percentage": percent, (0.01-0.99)
 "max_obstacle_size": float_size,
 "size_variation": float_variation,
 "seed": int_seed
}

A json will be returned that will look like this:

{
 "map_id" : some_number,
 "no_fly_zones": an array of points to be parsed
}

127.0.0.1:8000/dbrqs/generate_synthetic_noflies_clustering/

This call is used to generate a map with synthetic no fly zones that have clusters to be visualized
and partitioned later. You will need to send a json in such as:

{
 "region_width": float_width,
 "region_height": float_height,
 "center_latitude": float_latitude,
 "center_longitude": float_longitude,
 "obstacle_percentage": percent, (0.01-0.99)
 "max_obstacle_size": float_size,
 "size_variation": float_variation,
 "seed": int_seed,
 "clusters": array_of_locations
}

A json will be returned that will look like this:

{

55

 "map_id" : some_number,
 "no_fly_zones": an array of points to be parsed
}

127.0.0.1:8000/dbrqs/find_map_details/

Returns every aspect of a map that is currently loaded for it. You will need to pass in json of:

{
 "map_id": int_id,

 "partition_type": int_type,

 "num_drones": int_drones,
}

You will get back a json that looks like the following:

{
 "map_id" int_id,
 "map_length": float_height,
 "map_width": float_width,
 "map_center_lat": float_center_latitude,
 "map_center_long": float_center_longitude,
 "partitions": array of partitions,
 "no_fly_zones": array of no fly zones
}

127.0.0.1:8000/dbrqs/map_details_no_partitions/

Returns every aspect of a map that is loaded for it, with the exception of partitions. You will need to
pass in a json like:

{
 "map_id": int_id
}

You will get back a json that looks like the following:

{
 "map_id" int_id,
 "map_length": float_height,
 "map_width": float_width,
 "map_center_lat": float_center_latitude,
 "map_center_long": float_center_longitude,
 "no_fly_zones": array of no fly zones

56

}

127.0.0.1:8000/dbrqs/no_flies_on_map/

This API call just returns the no fly zones for a given map id. You will need to pass in a json of:

{
 "map_id": int_id
}

In response you will get back:

{
 "no_fly_zones": array of no fly zones
}

127.0.0.1:8000/dbrqs/partitions_of_map/

This API call returns the partitions of a given map id. You will need to pass in a json of:

{
 "map_id": int_id,
 "num_drones": int_drones
}

In response you will get back:

{
 "map_id": int_id,
 "no_kd_partitions": either a list of partitions or nothing,
 "half_perim_partitions": either a list of partitions or nothing,
 "native_partitions": either a list of partitions or nothing
}

127.0.0.1:8000/dbrqs/user_drawn_no_fly/

This API call takes in a list of no fly zones from the user to make a map out of them. You will need
to pass in a json of:

{
 "region_height": float_height,
 "region_width": float_width,
 "center_latitude": float_center_latitude,
 "center_longitude": float_center_longitude,
 "coordinates": array of arrays of points
}

57

You will receive back from the call:

{
 "map_id" int_id,
 "no_fly_zones": array of no fly zones
}

127.0.0.1:8000/dbrqs/partition_no_kd/

Partitions a given map without using a KD tree to do so. You will need to provide a json of:

{
 "map_id" int_id,
 "data_type": either "synthetic_percent", "synthetic", "iowa",
 "num_drones" int_drones (4, 8, 16, 32)
}

You will receive back from the call:

{
 "map_id" int_id,
 "partitions": array of partitions
}

127.0.0.1:8000/dbrqs/partition_kd_half/

Partitions a map using a KD tree with half perimeter calculations. You will need to provide a json of:

{
 "map_id" int_id,
 "data_type": either "synthetic_percent", "synthetic", "iowa",
 "num_drones" int_drones (4, 8, 16, 32)
}

You will receive back from the call:

{
 "map_id" int_id,
 "partitions": array of partitions
}

127.0.0.1:8000/dbrqs/partition_kd_native/

Partitions a map using a KD tree with native calculations (even splits). You will need to provide a
json of:

{

58

 "map_id" int_id,
 "data_type": either "synthetic_percent", "synthetic", "iowa",
 "num_drones" int_drones (4, 8, 16, 32)
}

You will receive back from the call:

{
 "map_id" int_id,
 "partitions": array of partitions
}

127.0.0.1:8000/dbrqs/respond_to_event/

This routes a drone to an event that is within a map, otherwise an error response is returned. You
will need to provide a json of:

{
 "map_id" int_id,
 "partition_type": int_type (0 for no kd, 1 for half perim, 2 for

native),
 "event_long": float_longitude,
 "event_lat": float_latitude
}

This returns a json that looks like:

{
 "map_id": int_id,
 "points_visited": array of points that were visited
}

127.0.0.1:8000/dbrqs/get_drone_number/

Fetches the drone to be used in the event given. You will need to provide a json of:

{
 "map_id" int_id,
 "num_drones": int_drones
 "partition_type": int_type (0 for no kd, 1 for half perim, 2 for

native),
 "event_long": float_longitude,
 "event_lat": float_latitude
}

This returns a json that looks like:

59

{
 "map_id": int_id,
 "drone_number": int_drone_number
}

127.0.0.1:8000/dbrqs/load_faa/

This call is used to load in data for the user to play around with, when they reach the site. Should
only be called once, when the backend application starts as these are the specific IDs for given
geojson maps.

 MAP ID 1 = Iowa specific no fly zones

 MAP ID 2 = Iowa Boundary

 MAP ID 3 = National Security UAS Flight Zones

 MAP ID 4 = Part time National Security Flight zones

 MAP ID 5 = Prohibited Areas

 MAP ID 6 = Recreational Flyer Sites

60

APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF DESIGN

Throughout the project timeline, there were a multitude of frontend design considerations. We
iterated though a few different prototype visuals, but the functionality remained constant once we
knew the true scope of what we needed to accomplish. This scope was realized once the PhD
algorithms were completed and shared with the team, so that serious implementation could begin.

One of the original proposed functionalities was custom algorithm selection for partitioning or
pathfinding. After deliberation between our team, it became clear that we should only focus on
utilizing the partitioning algorithm provided to us instead of adding needless complexity. Should
this project see future development, finding the most optimal partitioning algorithm could increase
efficiency.

As for backend design, we chose a framework that could support the functionalities we defined
right out of the gate and ran with it. There was consistent progress made throughout this timeline
with little need for a prototype or initial design drafting. Not to say that there wasn’t any refactoring
done, though, as initializing the database and running our server in a docker container required
additional framework customization.

61

APPENDIX 3 - CODE
https://git.ece.iastate.edu/sd/sdmay25-21

The structure of the database is written in code in the mentioned models.py file here:

Figure 20: Models of data structures setup in database

All API calls are routed through dburls here:

Figure 21: Routing of individual API calls

62

https://git.ece.iastate.edu/sd/sdmay25-21

Any settings to be modified in settings.py should be modified in lines 38-60 as shown here:

Figure 22: Important settings found within settings.py

The .env file in backend at locations backend->dronecontrol and
backend->dronecontrol->dronecontrol should look like this:

Figure 23: Example of the .env file for the backend

63

APPENDIX 4 - TEAM CONTRACT
Team Name: Attack of the Drones (sdmay25-21)

Required Skill Sets for the project:

Frontend Development - TypeScript, JavaScript, React+Vite

Backend Development - Python, Django, OOP development, Database Communication

Overlapping skills - Socket Communication, JSON

Skill sets covered by the team:

For the frontend skills - Kenneth Schueman, Melani Hodge, Nicholas Kokott

For the backend skills - Kenneth Schueman, Nicholas Kokott, Everett Duffy, Samuel Russett

For the overlapping skills - Kenneth Schueman, Nicholas Kokott, Cole Stuedeman

PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM:

For this project our team will be utilizing the agile development methodology, as we have all
experienced it in the past, and feel that it would be beneficial to continue using it.

Individual Project Management Roles:

Nicholas Kokott - Team Organizer

Melani Hodge - Frontend design/implementation

Cole Stuedeman - Testing

Everett Duffy - Component/Module Design

Ken Schueman - Advisor Communication and Frontend maintainer

Samuel Russett - Research Discovery and Testing

Team Contract:

Team Members:
1. Nicholas Kokott
2. Sam Russett

64

3. Everett Duffy
4. Melani Hodge
5. Kenneth Schueman
6. Cole Stuedeman

Team Procedures:

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
a. Mondays at 6:10 at SICTR 0107

2. Preferred method of communication updates, reminders, issues, and
scheduling (e.g., e-mail, phone, app, face-to-face):

a. We will use the phone generally as more of us will see it on the fly
rather than checking our emails, but if we need to involve our
advisor, we will utilize either our face-to-face meeting or email if that
is not close.

3. Decision-making policy (e.g., consensus, majority vote):
a. We will be doing a majority vote for many of the decisions

4. Procedures for record keeping (i.e., who will keep meeting minutes, how
will minutes be shared/archived):

a. Nicholas Kokott will keep the meeting minutes; others will also take
notes. However, these meeting minutes will be stored in our Senior
Design Google Drive folder and will be accessible in the meeting
minutes folder.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

a. Everyone should arrive at least 5 minutes early to ensure we are on
time for the professor. If anyone cannot make a meeting, they will
email the professor and the team about what is happening. We will
fill them in when we see them in class the following day.

2. Expected level of responsibility for fulfilling team assignments, timelines,
and deadlines:

a. We will equally contribute to the team assignments and complete
them to the best of our abilities by the day before the deadline so
that we can make modifications if needed. We will all communicate
to ensure that this happens promptly and that we are all on the same
page with our assignments.

3. Expected level of communication with other team members:
a. We will communicate daily about what we are doing and

contributing to the project. We will discuss what we have been

65

researching and figuring out and what could be useful when
designing the project.

4. Expected level of commitment to team decisions and tasks:
a. As for team decisions, we will be all committed to discussing

anything we are deciding on and ensuring that we come up with the
best possible solution to any problems we face. When we start
getting to individually assigned tasks, we will each be responsible for
each task we are assigned and complete them by the given deadlines
we set. Doing this will ensure we stay on task and can complete the
project by the end of the year.

Leadership

1. Leadership roles for each team member (e.g., team organization, client
interaction, individual component design, testing, etc.):

a. Nicholas Kokott will be responsible for the team organization
b. Kenneth Schueman will be in charge of advisor communication
c. Cole Stuedeman will be in charge of testing the design that we have

been making.
d. Everett Duffy will be responsible for the individual component

design if needed.
e. Samuel Russett will be in charge of research discovery and

distribution.
f. Melani Hodge will be in charge of algorithm design, ensuring they fit

what we are given.
g. We will all be responsible for movement towards development of the

project.
2. Strategies for supporting and guiding the work of all team members:

a. To support and guide the work of all team members, we will
continually talk and contribute ideas to each other daily to keep our
minds on the project. As well as this, if a member is struggling, we
will have one or two members come in to assist and see what may be
delaying the individual. If none of us can figure it out we will be
asking the advisor what we can do to solve the problem.

3. Strategies for recognizing the contributions of all team members:
a. This is very important, as all members should feel valued within the

team. We will continually acknowledge each other's work and thank
them for contributing to the team. We will also discuss our
contributions with our advisor to demonstrate to him that we are all
contributing.

Collaboration and Inclusion

66

1. Describe the skills, expertise, and unique perspectives each team member
brings to the team.

a. Nicholas Kokott - brings embedded systems and cybersecurity
experience to the team, virtual machines, and docker experience.

b. Kenneth Schueman - brings lots of AI knowledge and profound
programming experience to the team

c. Everett Duffy - brings the computer engineering expertise on the
team which will be vital when we start getting to the drones

d. Cole Stuedeman - brings great coding experience and vast
communication skills.

e. Samuel Russett - brings fantastic app development skills and
operating system understanding.

f. Melani Hodge - brings great understanding of algorithms and design
experience to the team

2. Strategies for encouraging and supporting contributions and ideas from all
team members:

a. In order to support and encourage contributions we will
continuously discuss things that pop into our minds in order to see
what might be the best solution. We are all aware that we don’t know
everything by any means and that we are all learning about
computational geometry. So, we will push forward any new
techniques we read and encourage others to read and learn about it
as it might be incredibly beneficial for everyone to see.

3. Procedures for identifying and resolving collaboration or inclusion issues
(e.g., how will a team member inform the team that the team environment
is obstructing their opportunity or ability to contribute?)

a. If a team member is having trouble contributing, they will just come
forward and address the issue with the rest of the team. Everyone on
the team will be open to hearing what the issue is and be willing to
change or help stop the obstruction that the individual is having at
the time. If that does not work, we will have a team meeting to
determine what we can do to fix the problem.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Our team goals for this semester are to research and plan for our

project. We need to gain knowledge and understanding of
background, formulas, and similar projects that have been done to
develop a successful prototype. We plan to begin constructing our
prototype towards the end of this semester.

2. Strategies for planning and assigning individual and teamwork:

67

a. We will continuously analyze, see who does not have work to do or is
close to completing their tasks, and give them something to work on.
If there is a gap in the assignments or development, we will have
them go look at research on the things we are curious about to
understand better potential implementations for any problems that
we are currently having.

3. Strategies for keeping on task:
a. To stay on task, we have deadlines for the assignments already put in

place. Outside of that we have already set up a Google calendar with
due dates on our things or things our advisor has been giving us.
This will give us reminders on our laptops and other devices to better
stay on track and ensure we do a great job.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team
contract?

a. We will reach out to the individual who breaks the contract and
encourage them to continue to push towards our collective goal.
Also, we will let the advisor know that this person may begin to be a
problem if they are not cooperating with us.

2. What will your team do if the infractions continue?
a. If the infractions continue we will involve the instructors of the

course and inform them of whatever this person is doing. This
should be enough to stop them from breaking the contract
continually and get the team back on track for the rest of the
semester.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) Nicholas Kokott DATE 9/12/24
2) Kenneth Schueman DATE 9/12/24
3) Cole Stuedeman DATE 9/12/24
4) Everett Duffy DATE 9/12/24
5) Samuel Russett DATE 9/12/24
6) Melani Hodge DATE 9/12/24

68

	Distributing a Fleet of Drones over an Area with No-Fly Zones
	Executive Summary
	
	Learning Summary
	DEVELOPMENT STANDARDS & PRACTICES USED
	SUMMARY OF REQUIREMENTS
	APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
	NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

	Table of Contents
	Tables and Figures
	TABLES
	FIGURES

	
	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	
	2 Requirements, Constraints, And Standards
	2.1 REQUIREMENTS & CONSTRAINTS
	2.2 UI REQUIREMENTS
	2.3 SECURITY REQUIREMENTS
	2.4 BACKEND REQUIREMENTS
	2.5 ECONOMIC REQUIREMENTS
	2.6 RESOURCE REQUIREMENTS
	2.7 PHYSICAL REQUIREMENTS
	2.8 ENGINEERING STANDARDS

	
	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	
	
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	
	4.1.2 Prior Work/Solutions
	Target Solution Comparison:
	-Pros:

	4.1.3 Technical Complexity
	Subsystems:
	Challenging Requirements:

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 FINAL DESIGN
	4.3.1 Overview
	
	4.3.2 Detailed Design and Visual(s)
	
	4.3.3 Functionality
	4.3.4 Areas of Challenge
	4.4 Technology Considerations

	4.5 DESIGN ANALYSIS

	
	
	
	
	
	
	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 USER TESTING
	5.8 RESULTS

	
	6 Implementation
	6.1 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	

	7.2 FOUR PRINCIPLES
	

	7.3 VIRTUES

	
	8 Conclusions
	 8.1 SUMMARY OF PROGRESS
	 8.2 VALUE PROVIDED
	 8.3 NEXT STEPS

	9 References
	
	10 Appendices
	APPENDIX 1 - OPERATION MANUAL
	APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 3 - CODE
	APPENDIX 4 - TEAM CONTRACT
	
	

